Abstrakt: |
Late rearrangement products that accumulate by glycation of proteins, known as advanced glycation end products (AGEs), have been implicated in the pathogenesis of complications related to diabetes. Circulating AGEs, especially in the form of a small peptide (AGE-peptide) of less than 10 kd, increase in the blood of diabetic patients with end-stage renal disease (ESRD). The aim of the study was to evaluate AGE-peptide levels by measuring AGE-specific fluorescence (excitation at 370 nm and emission at 440 nm) and to examine the relationship between AGE-peptide and diabetic nephropathy. AGE-specific fluorescence in serum and urine were examined in diabetic subjects with various levels of renal complications of varying severity: normoalbuminuria (N), microalbuminuria (Mi), macroalbuminuria (Ma), chronic renal failure (C), and hemodialysis (HD). We also assessed correlations among the AGE-peptide level and age, duration of diabetes, hemoglobin A1c (HbA1c), serum creatinine, and creatinine clearance. Serum and urine AGE-peptide levels in C and HD were significantly higher than in N, Mi, and Ma. Serum AGE-peptide levels were significantly correlated with serum creatinine (r=.866, P < .0001) and creatinine clearance (r=-.720, P < .0001) but not with duration of diabetes or age. There was a significant correlation between AGE-peptide levels measured by enzyme-linked immunosorbent assay (ELISA) and levels determined from the specific fluorescence intensity (r=.688, P < .0001). These findings suggest that renal function may play a greater role in the accumulation of AGEs than persistent hyperglycemia in diabetic patients. Measurement of AGE-specific fluorescence (ie, AGE-peptide) may serve as a simple and useful test to assess circulating AGE levels and monitor AGE excretion. |