Incidence of deep vein thrombosis after laparoscopic vs minilaparotomy cholecystectomy.

Autor: Lord RV; Department of Surgery, St Vincent's Hospital, Sydney, Australia., Ling JJ, Hugh TB, Coleman MJ, Doust BD, Nivison-Smith I
Jazyk: angličtina
Zdroj: Archives of surgery (Chicago, Ill. : 1960) [Arch Surg] 1998 Sep; Vol. 133 (9), pp. 967-73.
DOI: 10.1001/archsurg.133.9.967
Abstrakt: Objectives: To determine the frequency of deep vein thrombosis (DVT) associated with minimally invasive cholecystectomy and to determine, using minilaparotomy cholecystectomy as a control operation, the influence of the laparoscopic pneumoperitoneum on DVT formation.
Design: Prospective nonrandomized control trial.
Setting: Tertiary care university hospital.
Patients: One hundred consecutive patients intended to undergo either laparoscopic cholecystectomy (59 patients) or minilaparotomy cholecystectomy (41 patients) with either of 2 surgeons were prospectively enrolled between April 1996 and April 1997. The minilaparotomy cholecystectomy group served as controls to isolate the effect of the pneumoperitoneum. Patient details, operative details, and any thromboembolic or bleeding complications were recorded. The same thromboprophylaxis regimen was prescribed for each group; namely, preoperative and postoperative subcutaneous low-molecular-weight heparin (LMWH), graduated compression stockings, and intraoperative intermittent calf compression.
Intervention: Minimally invasive cholecystectomy.
Main Outcome Measure: Frequency of DVT. Bilateral lower limb venous color duplex scanning was used to detect DVT. Scans were performed on 3 occasions: (1) preoperatively on admission to hospital, (2) on the first postoperative day, and (3) between 2 and 4 weeks postoperatively.
Results: Three patients in the laparoscopic group and 2 patients in the minilaparotomy group underwent conversion to conventional open cholecystectomy. There were no significant differences between patients in the 2 groups for age, sex, body mass index, preoperative white blood cell count, platelet count, prothrombin time, or activated partial thromboplastin time. There were no significant differences between the 2 groups for elective vs emergency operations, public hospital vs private hospital admissions, or consultant vs resident surgeon. Macroscopic gallbladder pathology grades for both groups were not significantly different, and there was no significant difference in the duration of postoperative hospital stay. Operative cholangiography was performed in a significantly larger proportion of laparoscopic cases (86% vs 66% in the minilaparotomy group; chi(2) test, P=.002), and the duration of anesthesia was significantly longer for the laparoscopic operation (118 minutes vs 98 minutes; t test, P=.05). Ninety-seven patients received preoperative LMWH and all patients received graduated compression stockings, intraoperative intermittent calf compression, and postoperative LMWH. Two of the 100 patients had postoperative DVT, 1 after laparoscopic cholecystectomy and 1 after minilaparotomy cholecystectomy. Both DVTs were detected by duplex examination on the first postoperative day. The DVT found after laparoscopic cholecystectomy was in 1 of the 3 patients who did not receive preoperative LMWH. There were no DVTs in any of the 40 patients who had an additional duplex scan between 2 and 4 weeks after operation.
Conclusions: Despite the theoretical risk of thromboembolic disease due to use of the laparoscopic pneumoperitoneum, the frequency of DVT after either laparoscopic cholecystectomy or minilaparotomy cholecystectomy is low if adequate thromboprophylaxis is provided.
Databáze: MEDLINE