Autor: |
Vreeswijk MP; Medical Genetics Centre-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands., Westland BE, Hess MT, Naegeli H, Vrieling H, van Zeeland AA, Mullenders LH |
Jazyk: |
angličtina |
Zdroj: |
Cancer research [Cancer Res] 1998 May 01; Vol. 58 (9), pp. 1978-85. |
Abstrakt: |
We investigated the relationship between nucleotide excision repair (NER) activity and apoptosis in UV-irradiated cells. Mouse erythroleukemia (MEL) and lymphoma (GRSL) cells exhibited enhanced sensitivity to the cytotoxic effects of UV radiation compared to hamster cell lines, although normal UV-induced hprt mutation frequencies were found. Determination of UV-induced repair replication revealed a limited capacity of MEL and GRSL cells to perform NER consistent with poor removal of cyclobutane pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts from transcriptionally active genes during the first 8 h after UV exposure. However, both cyclobutane pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts appeared to be processed to almost normal level 24 h after UV treatment. In parallel, we observed that the UV-irradiated MEL and GRSL cells suffered from severe DNA fragmentation particularly 24 h after UV exposure. Taken together, these data indicate a reduced repair of UV-induced photolesions in apoptotic cells, already established at the early onset of apoptosis. To test whether inhibition of repair in cells was due to inactivation of NER or to apoptosis-induced chromatin degradation, we performed in vitro excision assays using extracts from UV-irradiated MEL cells. These experiments showed that the NER capacity during early apoptosis was intact, indicating that slow removal of UV-induced photolesions in apoptotic cells is due to substrate modification (presumably degradation of chromatin) rather than direct inhibition of factors involved in NER. |
Databáze: |
MEDLINE |
Externí odkaz: |
|