Long-term effects of axotomy on excitability and growth of isolated Aplysia sensory neurons in cell culture: potential role of cAMP.

Autor: Bedi SS; Department of Physiological Science, UCLA, Los Angeles, California 90095-1568, USA., Salim A, Chen S, Glanzman DL
Jazyk: angličtina
Zdroj: Journal of neurophysiology [J Neurophysiol] 1998 Mar; Vol. 79 (3), pp. 1371-83.
DOI: 10.1152/jn.1998.79.3.1371
Abstrakt: Crushing nerves, which contain the axons of central sensory neurons, in Aplysia causes the neurons to become hyperexcitable and to sprout new processes. Previous experiments that examined the effects of axonal injury on Aplysia sensory neurons have been performed in the intact animal or in the semi-intact CNS of Aplysia. It therefore has been unclear to what extent the long-term neuronal consequences of injury are due to intrinsic or extrinsic cellular signals. To determine whether injury-induced changes in Aplysia sensory neurons are due to intrinsic or extrinsic signals, we have developed an in vitro model of axonal injury. Isolated central sensory neurons grown for 2 days in cell culture were axotomized. Approximately 24 h after axotomy, sensory neurons exhibited a greater excitability-reflected, in part, as a significant reduction in spike accommodation-and greater neuritic outgrowth than did control (unaxotomized) neurons. Rp diastereoisomer of the cyclic adenosine 3',5'-monophosphorothiate (Rp-cAMPS), an inhibitor of protein kinase A, blocked both the reduction in accommodation and increased neuritic outgrowth induced by axotomy. Rp-cAMPS also blocked similar, albeit smaller, alterations observed in control sensory neurons during the 24-h period of our experiments. These results indicate that axonal injury elevates cAMP levels within Aplysia sensory neurons, and that this elevation is directly responsible, in part, for the previously described long-term electrophysiological and morphological changes induced in Aplysia sensory neurons by nerve crush. In addition, the results indicate that control sensory neurons in culture are also undergoing injury-related electrophysiological and structural changes, probably due to cellular processes triggered when the neurons are axotomized during cell culturing. Finally, the results provide support for the idea that the cellular processes activated within Aplysia sensory neurons by injury, and those activated during long-term behavioral sensitization, overlap significantly.
Databáze: MEDLINE