Autor: |
Woolard DL; US Army Research Laboratory, Adelphi, MD 20783-1197, USA., Koscica T, Rhodes DL, Cui HL, Pastore RA, Jensen JO, Jensen JL, Loerop WR, Jacobsen RH, Mittleman D, Nuss MC |
Jazyk: |
angličtina |
Zdroj: |
Journal of applied toxicology : JAT [J Appl Toxicol] 1997 Jul-Aug; Vol. 17 (4), pp. 243-6. |
DOI: |
10.1002/(sici)1099-1263(199707)17:4<243::aid-jat436>3.0.co;2-6 |
Abstrakt: |
Developing methods for alternative testing is increasingly important due to dwindling funding resources and increasing costs associated with animal testing and legislation. We propose to test the feasibility of a new and novel method for detecting DNA mutagenesis using millimeter wave spectroscopy. Although millimeter wave spectroscopy has been known since the 1950s, the cost was prohibitive and studies did not extend to large biological proteins such as DNA. Recent advances have made this technology feasible for developing laboratory and field equipment. We present preliminary findings for lesion-induced vibrational modes in DNA observed from 80 to 1000 gigahertz (GHz). These findings suggest that there are vibrational modes that can be used as identification resonances. These modes are associated with localized defects of the DNA polymers. They are unique for each defect/lesion, and should be easy to detect. We described a field-detecting detector based on the local modes. |
Databáze: |
MEDLINE |
Externí odkaz: |
|