Evidence for increased beta-adrenoreceptor responsiveness induced by 14 days of simulated microgravity in humans.

Autor: Convertino VA; Biomedical Operations and Research Office, National Aeronautics and Space Administration, Kennedy Space Center, Florida 32899, USA., Polet JL, Engelke KA, Hoffler GW, Lane LD, Blomqvist CG
Jazyk: angličtina
Zdroj: The American journal of physiology [Am J Physiol] 1997 Jul; Vol. 273 (1 Pt 2), pp. R93-9.
DOI: 10.1152/ajpregu.1997.273.1.R93
Abstrakt: We studied hemodynamic responses to alpha- and beta-receptor agonists in eight healthy men before and after 14 days of 6 degrees head-down tilt (HDT) to test the hypothesis that increased adrenoreceptor responsiveness is induced by prolonged exposure to simulated microgravity. Steady-state infusions of isoproterenol (Iso) at rates of 0.005, 0.01, and 0.02 microgram.kg-1.min-1 were used to assess beta 1- and beta 2-adrenoreceptor responsiveness. Infusions of phenylephrine (PE) at rates of 0.25, 0.50, and 1.00 microgram.kg-1.min-1 were used to assess responsiveness of alpha 1-vascular adrenoreceptors. Slopes calculated from linear regressions between Iso and PE doses and changes in beat-to-beat heart rate, blood pressure, and leg vascular resistance (occlusion plethysmography) for each subject were used as an index of alpha- and beta-adrenoreceptor responsiveness. HDT increased the slopes of heart rate (1,056 +/- 107 to 1,553 +/- 83 beats micrograms-1.kg-1.min-1; P = 0.014) and vasodilation (-469 +/- 111 to -1,446 +/- 309 peripheral resistance units.microgram-1.kg-1.min-1; P = 0.0224) to Iso infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that simulated microgravity causes selective increases in beta 1- and beta 2-adrenoreceptor responsiveness without affecting alpha 1-vascular adrenoreceptor responses.
Databáze: MEDLINE