Abstrakt: |
Selegiline, an irreversible and selective inhibitor of monoamine oxidase type B (MAO-B), is metabolized into desmethylselegiline, levomethamphetamine, and levoamphetamine. In animal experiments, desmethylselegiline also has been shown to be an irreversible inhibitor of MAO-B. This study investigated the inhibitory potential of MAO-B and the pharmacokinetics of desmethylselegiline in humans. A double-blind, crossover trial was performed to compare the effects of a single dose (10 mg) of selegiline or desmethylselegiline on MAO-B platelet activity. The urinary excretion of phenylethylamine, which is considered to be a parameter of MAO-B inhibition, also was measured. The concentrations of selegiline, desmethylselegiline, and their metabolites were measured in plasma after administration of the two compounds. Ten healthy volunteers participated in the study. There was a clear inhibition of platelet MAO-B by both compounds. Desmethylselegiline caused a 63.7 +/- 12.7% inhibition of platelet MAO-B compared with 96.4 +/- 3.9% caused by selegiline. The maximal inhibition by desmethylselegiline was reached significantly later after desmethylselegiline (time to reach maximal inhibition [tmax], 27 +/- 20 hours) than after selegiline administration (tmax, 1.4 +/- 1.4 hours). The platelet MAO-B activity returned to baseline levels within 2 weeks, thus reflecting the irreversible nature of the inhibition by both compounds. The cumulative 48-hour excretion of phenylethylamine was 33% lower after desmethylselegiline than after selegiline administration. All three major metabolites of selegiline could be detected in plasma after selegiline administration. Levoamphetamine was the only metabolite of desmethylselegiline. The area under the concentration-time curve from time 0 to 24 hours (AUC0-24) of desmethylselegiline was 33 times higher than that of selegiline, suggesting a better bioavailability of desmethylselegiline. Desmethylselegiline is an orally active, irreversible inhibitor of MAO-B and could possibly be used to treat Parkinson's disease in the same way as selegiline. |