Autor: |
Yao LJ; Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA., James TL, Kealey JT, Santi DV, Schmitz U |
Jazyk: |
angličtina |
Zdroj: |
Journal of biomolecular NMR [J Biomol NMR] 1997 Apr; Vol. 9 (3), pp. 229-44. |
DOI: |
10.1023/a:1018618606857 |
Abstrakt: |
tRNA (m5U54)-methyltransferase (RUMT) catalyzes the S-adenosylmethionine-dependent methylation of uridine-54 in the T psi C-loop of all transfer RNAs in E. coli to form the 54-ribosylthymine residue. However, in all tRNA structures, residue 54 is completely buried and the question arises as to how RUMT gains access to the methylation site. A 17-mer RNA hairpin consisting of nucleotides 49-65 of the T psi-loop is a substrate for RUMT. Homonuclear NMR methods in conjunction with restrained molecular dynamics (MD) methods were used to determine the solution structure of the 17-mer T-arm fragment. The loop of the hairpin exhibits enhanced flexibility which renders the conventional NMR average structure less useful compared to the more commonly found situation where a molecule exists in predominantly one major conformation. However, when resorting to softer refinement methods such as MD with time-averaged restraints, the conflicting restraints in the loop can be satisfied much better. The dynamic structure of the T-arm is represented as an ensemble of 10 time-clusters. In all of these, U54 is completely exposed. The flexibility of the T psi-loop in solution in conjunction with extensive binding studies of RUMT with the T psi C-loop and tRNA suggest that the specificity of the RUMT/ tRNA recognition is associated with tRNA tertiary structure elements. For the methylation, RUMT would simply have to break the tertiary interactions between the D- and T-loops, leading to a melting of the T-arm structure and making U54 available for methylation. |
Databáze: |
MEDLINE |
Externí odkaz: |
|