Abstrakt: |
Fast, multiple-site optical recording of voltage-sensitive dye (VSD) signals and intracellular microelectrode recordings were combined to characterize visually evoked neuronal responses in the visual cortex of the pond turtle, Pseudemys scripta. By using an in vitro, eye-brain preparation stained with the merocyanine oxazolone voltage-sensitive dye, NK-2495 or a close analog, NK-2761, large VSD signals relatively free of vibrational noise could be recorded in single trials following a stroboscopic light flash to the contralateral eye. VSD signals recorded from the same cortical location in repeated trials exhibited considerable variability in the onset, duration, and amplitude of secondary depolarizations. Because of this variability, secondary depolarizations were largely absent in signal-averaged responses. Superposition of VSD signals with intracellular recordings obtained from cortical pyramidal cells revealed a close correspondence between their signal waveforms. The two signals were virtually identical in their onset, initial rate of rise, and time-to-peak. At later periods (> 500 ms), the correspondence was less close, especially for large cortical depolarizations. Some of this disparity could be attributed to contamination of the VSD signal by a large intrinsic optical response. A second contribution was a failure of the VSD signal to register asynchronous regenerative effects occurring in single pyramidal cells. It is suggested that the close correspondence between the microelectrode and optical recordings in the early phase of the response may reflect the organization of pyramidal cells into clusters that receive virtually identical synaptic inputs. |