Abstrakt: |
At any point during the progression of many tumor types, cells can develop a hyperploid DNA content. Hyperploid tumors are significant more aggressive, with a higher growth rate and a poor patient prognosis. Yeast genetics have implicated three important genes involved in DNA ploidy changes: cdc2, cyclin b, and a specific inhibitor of the p34(cdc2)/cyclin B kinase, rum1. Mutations in these genes uncoupled the dependence mitosis on DNA replication in the fission yeast, Saccharomyces pombe. It was proposed that the inactivation of the mitotic kinase complex, p34(cdc2)/cyclin B, induces a G(1), state wherein the cells re-replicate their DNA without an intervening mitosis. We show in this report that treatment of only M phase-arrested mouse cells, with the protein kinase inhibitor staurosporine, induced polyploidy. Nocodazole-arrested metaphase FT210 cells were pulsed with 100 ng/ml of staurosporine for 1 h. This 1-h treatment results in the inhibition of the mitotic p34(cdc2) kinase. The inhibition of the mitotic kinases leads to a reduction in the histone H1 and H3 mitotic-associated phosphorylations, chromosome decondensation and nuclear membrane reformation. When released into normal growth medium, these cells are reset to a G(1)state, re-replicate their DNA without completing mitosis, and become octaploid. |