Abstrakt: |
Fibronectin, a component of the extracellular matrix in a variety of tissues, participates in many critical cellular processes, including differentiation, adhesion, and migration. A positive correlation exists between the presence of fibronectin and the onset of chondrogenesis, the differentiation of mesenchyme into cartilage. Heterogeneity in the structure of fibronectin is largely due to the alternative splicing of at least three exons (IIIB, IIIA, and V) during processing of a single primary transcript. We have previously shown that the fibronectin mRNA splicing patterns change during chondrogenesis (Bennett et al. [1991] J. Biol. Chem, 266:5918-5924). All of the fibronectin mRNAs from prechondrogenic chick limb mesenchyme contain exons IIIB, IIIA, and V (B + A + V +), whereas all of the fibronectin mRNAs from chick cartilage contain exons IIIB and V but do not contain exon IIIA (B + A - V +). In this study, we show that fibronectin mRNAs containing exon IIIA (FN-A) and/or the mRNAs containing exon IIIB (FN-B) are expressed in a specific and different spatiotemporal manner in the developing chick limb in vivo, as well as in limb mesenchymal cells undergoing chondrogenesis in vitro. Specifically, in situ hybridization reveals that FN-B mRNAs are present throughout the various stages (HH 20-30) of limb cartilage development in vivo, whereas FN-A mRNAs disappear following the condensation phase of chondrogenesis and absent from the resulting cartilage, Chick limb cartilage fibronectin mRNAs are therefore B + A-, as in other embryonic cartilage tissues. Furthermore, limb mesenchymal cells undergoing chondrogenesis in vitro lose FN-A mRNAs immediately following condensation, recapitulating the events that occur during chondrogenesis in vivo. These results suggest an important role for fibronectin mRNA alternative splicing during chondrogenic differentiation. |