Transplantation of human endothelial cell monolayer on artificial vascular prosthesis: the effect of growth-support surface chemistry, cell seeding density, ECM protein coating, and growth factors.

Autor: Sipehia R; Artificial Cells and Organs Research Centre, McGill University, Montreal, Quebec, Canada., Martucci G, Lipscombe J
Jazyk: angličtina
Zdroj: Artificial cells, blood substitutes, and immobilization biotechnology [Artif Cells Blood Substit Immobil Biotechnol] 1996 Jan; Vol. 24 (1), pp. 51-63.
DOI: 10.3109/10731199609117431
Abstrakt: The failure rates of synthetic vascular grafts, when placed in low blood flow environments in humans, are not acceptable. Thus, endothelial cell (EC) seeding technology of vascular grafts was developed to prepare prostheses lined with a human monolayer expressing optimal thromboresistant properties. In a clinical setting, endothelialization of a graft can be achieved using higher cell seeding densities, or by creating a surface on which EC can adhere and grow to confluence. But, human endothelial cells show little or no proliferation on the currently available graft materials. In this study, surface modification of PTFE and ePTFE by ammonia plasma treatment was carried out to enhance its interactions with ECM protein, EC growth factors, and with EC harvested from human umbilical vein (HUVEC), and from human saphenous veins (HSVEC). Our data shows that various vascular graft materials generated from ammonia plasma treated PTFE and ePTFE exhibited statistically significant improvements in HUVEC and HSVEC growth when compared to their respective controls (p values < 0.001). Growth of HSVEC on ammonia plasma treated ePTFE without ECM protein coating was also found to be statistically significant in comparison to that on fibronectin coated ePTFE (p < 0.001). The final HSVEC cell densities found on various ePTFE surfaces prepared from ammonia plasma treated ePTFE, suggests that transplantation of HSVEC monolayers on vascular prostheses can be established within clinically relevant times. Ammonia plasma treatment process provides an unique opportunity to surface modify prosthetic materials of various construct to transplant mammalian cells including those that have undergone ex vivo gene transfer, and to deliver angiogenic molecules to a target area for tissue development.
Databáze: MEDLINE