Purification of four forms of the beta gamma subunit complex of G proteins containing different gamma subunits.

Autor: Asano T; Department of Biochemistry, Aichi Prefectural Colony, Japan., Morishita R, Matsuda T, Fukada Y, Yoshizawa T, Kato K
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 1993 Sep 25; Vol. 268 (27), pp. 20512-9.
Abstrakt: To investigate the physiological significance of the diversity of gamma subunits of G proteins, we purified four forms of beta gamma of G proteins from bovine brain (beta gamma-B1, beta gamma-B2, beta gamma-B3), and spleen (beta gamma-S1) by the sequential chromatography on columns of DEAE-Sephacel, Ultrogel AcA 34, heptylamine-Sepharose, phenyl-5PW, and DEAE-5PW. Electrophoretic analyses showed that each beta gamma mainly contained the 36-kDa beta and a distinct but homogeneous gamma. These beta gamma complexes were subjected directly to proteolytic digestion and subsequent amino acid sequence analyses of their fragments. It was revealed that beta gamma-B1, -B2, and -B3 were identical to beta 1 gamma 7 (with a low level of beta 2 gamma 7), beta 1 gamma 2 and beta 1 gamma 3, respectively, while beta gamma-S1 was composed of beta 1 and an unidentified form of gamma. Then we examined the functional differences among these beta gamma complexes and the beta gamma of transducin (beta gamma-T, beta 1 gamma 1). Few differences were observed among all beta gamma complexes to enhance pertussis toxin-catalyzed ADP-ribosylation of the alpha subunits of G(o) and Gt. The four forms of beta gamma complexes purified from brain and spleen showed indistinguishable inhibitory effects on the release of GDP from G(o) alpha, but beta gamma-T was much less effective. Brain and spleen beta gamma complexes were equally effective in inhibiting calmodulin-stimulated adenylyl-cyclase activity, but beta gamma-T had a very weak inhibitory effect. Five forms of beta gamma facilitated metarhodopsin II-catalyzed binding of GTP gamma S to Gt alpha in a concentration-dependent manner with the following rank order of effectiveness: beta gamma-S1 > beta gamma-T > beta gamma-B1 > beta gamma-B2 > beta gamma-B3. Because the beta gamma complexes used in this study mostly contained the same beta subunit, the functional differences must be dependent on the gamma subunits. Thus, it seems likely that the receptor, the alpha subunits, and the effector are able to distinguish between the various gamma subunits.
Databáze: MEDLINE