Bayesian inference for model-based segmentation of computed radiographs of the hand.

Autor: Levitt TS; National Center for Computed Imaging, San Francisco VA Medical Center, CA 94121-1598., Hedgcock MW Jr, Dye JW, Johnston SE, Shadle VM, Vosky D
Jazyk: angličtina
Zdroj: Artificial intelligence in medicine [Artif Intell Med] 1993 Aug; Vol. 5 (4), pp. 365-87.
DOI: 10.1016/0933-3657(93)90022-u
Abstrakt: We present a method for medical image understanding by computer that uses model-based, hierarchical Bayesian inference to accurately segment imaged anatomy. A first application is a prototype system that automatically segments and measures symptoms of arthridities in hand radiographs. This is potentially useful in radiological diagnosis and tracking of arthridities. Key steps of the model-based, Bayesian inference approach are: (1) prediction of imagery features from 3D models of anatomy, parameterized by population statistics, (2) local image feature extraction in predicted sub-regions, and (3) the use of a probabilistic calculus to accrue results of image processing and image feature matching procedures in support or denial of hypotheses about the imaged anatomy. The prototype system for hand radiograph analysis accurately segments normal and somewhat degenerated hand anatomy. Results are shown of the ability of the automated system to 'fail soft', recognizing when segmentation is inadequate for accurate measurement. This self evaluation capability improves reliability of measurements for potential clinical use.
Databáze: MEDLINE