Abstrakt: |
Both serum and spleen cells from mice immune to Francisella tularensis transfer protection to naive recipients. Here we characterize the mechanism of protection induced by transfer of immune mouse serum (IMS). IMS obtained 4 weeks after intradermal infection with 10(3) bacteria of the live vaccine strain (LVS) contained high levels of immunoglobulin G2 (IgG2a) and IgM (end point titers, 1:16,600 and 1:7,200, respectively) and little IgG1, IgG2b, or IgG3. LVS-specific antibodies were detected 5 days after intradermal infection, and reached peak levels by 2 weeks postinfection. Only sera obtained 10 days or more after sublethal infection, when IgG titers peaked, transferred protection against a challenge of 100 50% lethal doses (LD50s). Purified high-titer IgG anti-LVS antibody but not IgM anti-LVS antibody was responsible for transfer of protection against an intraperitoneal challenge of up to 3,000 LD50s. IMS had no direct toxic effects on LVS and did not affect uptake or growth of bacteria in association with peritoneal cells. One day after LVS infection, liver, spleen, and lung tissue from mice treated with IMS contained 1 to 2 log units fewer bacteria than did tissue from mice treated with normal mouse serum or phosphate-buffered saline. Between 2 and 4 days after infection, however, bacterial growth rates in tissues were similar in both serum-protected mice and unprotected mice. Bacterial burdens in IMS-treated, LVS-infected mice declined in infected tissues after day 5, whereas control animals died. This lag phase suggested that development of a host response was involved in complete bacterial clearance. In fact, transfer of IMS into normal recipients that were simultaneously treated with anti-gamma interferon and challenged with LVS did not protect mice from death. Further, transfer of IMS into athymic nu/nu mice did not protect against LVS challenge; protection was, however, reconstituted by transfer of normal T cells into nu/nu mice. Thus, "passive" transfer of protection against LVS with specific antibody is not passive but depends on a host T-cell response to promote clearance of systemic infection and protection against lethal disease. |