1,25-Dihydroxyvitamin D3 attenuates adenylyl cyclase activity in rat thyroid cells: reduction of thyrotropin receptor number and increase in guanine nucleotide-binding protein Gi-2 alpha.

Autor: Berg JP; Hormone Laboratory, Aker Hospital, Oslo, Norway., Sandvik JA, Ree AH, Sørnes G, Bjøro T, Torjesen PA, Gordeladze JO, Haug E
Jazyk: angličtina
Zdroj: Endocrinology [Endocrinology] 1994 Aug; Vol. 135 (2), pp. 595-602.
DOI: 10.1210/endo.135.2.8033808
Abstrakt: 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the most potent of the naturally occurring vitamin D metabolites. In rat thyroid FRTL-5 cells, 1,25-(OH)2D3 attenuated the increase in TSH-stimulated adenylyl cyclase activity obtained by removing TSH from the culture medium. When cells were incubated with 1,25-(OH)2D3 (10 nmol/liter; 4 days), the binding capacity for specific [125I]TSH binding decreased from 20.1 +/- 1.8 to 8.8 +/- 1.6 fmol/10(6) cells (mean +/- SEM; n = 4; P < 0.01) compared to that in control cells. The Kd did not change (mean +/- SEM, 0.46 +/- 0.09 vs. 0.25 +/- 0.07 nmol/liter; n = 4; P = NS). Western blotting revealed no change in the membrane content of the adenylyl cyclase (AC) stimulatory guanine nucleotide-binding protein (G-protein) alpha-subunit (Gs alpha) during 1,25-(OH)2D3 treatment. Similarly, levels of the AC inhibitory G-protein Gi-3 alpha- and G-protein beta-subunits were not altered by 1,25-(OH)2D3. However, Western blotting with antibodies recognizing both Gi-1 alpha and Gi-2 alpha was augmented 4-fold, presumably representing an increase in Gi-2 alpha only, as Gi-1 alpha messenger RNA (mRNA) was not detected in FRTL-5 cells. 1,25-(OH)2D3 (10 nmol/liter; 4 days) reduced cholera toxin (10 nmol/liter)-stimulated AC activity to 85% of the control value (P < 0.05), whereas forskolin (100 mumol/liter)-stimulated direct activation of AC was inhibited by 39%. The TSH receptor mRNA level correlated to the beta-actin mRNA was 2-fold higher in control cells compared to that in 1,25-(OH)2D3-treated cells 12 h after TSH removal. Only minor alterations in the Gs alpha mRNA/beta-actin mRNA and Gi-3 alpha mRNA/beta-actin mRNA ratios were observed during 1,25-(OH)2D3 treatment, whereas Gi-2 alpha mRNA increased 3-fold compared to that in control cells. No change in the resting intracellular Ca2+ concentration could be detected after 4 days of 1,25-(OH)2D3 treatment. Our studies show that 1,25-(OH)2D3 attenuates AC activity by reducing the TSH receptor number and increasing the level of the AC inhibitory G-protein Gi-2 alpha in FRTL-5 cells.
Databáze: MEDLINE