Autor: |
Epstein S; Department of Endocrinology, Albert Einstein Medical Center, Philadelphia, Pennsylvania., Takizawa M, Stein B, Katz IA, Joffe II, Romero DF, Liang XG, Li M, Ke HZ, Jee WS, et. al. |
Abstrakt: |
Cyclosporin A (CsA) is widely used in diabetic transplant patients and early type I diabetes mellitus. Diabetes produces a low-turnover osteopenia, and CsA conversely induces high-turnover osteopenia in rats. We investigated whether CsA would exacerbate diabetic osteopenia. Four groups of 10-week-old male Sprague-Dawley rats (n = 11/group) were studied: On day -6, groups A and C received saline and groups B and D received intravenous streptozotocin (55 mg/kg) to induce diabetes. From day 0, groups A and B received CsA vehicle and C and D received CsA (15 mg/kg) by daily gavage. Rats were bled on days -6, 0, 11, and 22 for serum bone gla protein (BGP), 1,25-(OH)2D, PTH, blood ionized Ca, and blood glucose determinations. Double tetracycline labeling was performed on days 9 and 20 for bone histomorphometry. After sacrifice on day 22, histomorphometric analysis was performed. Serum BGP, 1,25-(OH)2D, and PTH levels were significantly decreased in the diabetic alone (B) and diabetic plus CsA (D) groups and significantly increased in the CsA alone (group C). CsA alone (group C) induced cancellous bone loss by stimulated bone resorption. Cancellous bone loss in the diabetic alone rats (group B) was caused primarily by inhibited bone formation. No differences were found in cancellous bone mass, formation, or resorption parameters between diabetic alone (group B) and CsA-treated diabetic rats (group D). Neither CsA alone (group C) nor diabetic alone (group B) nor their combination affected cortical bone mass. CsA alone (group C) stimulated periosteal bone formation and endocortical bone resorption and inhibited endocortical formation, and diabetic alone (group B) inhibited both periosteal and endocortical bone formation. No parameters of tibial diaphyses in CsA-treated diabetic rats (group D) were different from diabetic alone. Thus the addition of CSA to the diabetic treated rats (group D) could not stimulate remodeling and appeared not to worsen significantly some of the alterations in bone formation and resorption. Possible explanations for this may be that CsA in vivo requires adequate levels of PTH, 1,25-(OH)2D, insulin, and perhaps growth factors to stimulate remodeling. The use of CsA in type I diabetic patients or in organ transplant recipients who remain diabetic after transplantation may in the short term not aggravate existing osteopenia based on these findings. |