NMR studies of 1H resonances in the 10-18-ppm range for aspartate aminotransferase from Escherichia coli.

Autor: Metzler DE; Department of Biochemistry and Biophysics, Iowa State University, Ames 50011., Metzler CM, Scott RD, Mollova ET, Kagamiyama H, Yano T, Kuramitsu S, Hayashi H, Hirotsu K, Miyahara I
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 1994 Nov 11; Vol. 269 (45), pp. 28027-33.
Abstrakt: We have recorded 500-MHz 1H NMR spectra in the 10-18-ppm range for aspartate aminotransferase from Escherichia coli and for three specific mutant forms. Histidine 143 has been replaced by either alanine or asparagine. In the third mutant, tryptophan 140 has been replaced by phenylalanine. The NMR spectrum of the native enzyme is very similar to that of porcine cytosolic aspartate aminotransferase in the most downfield region. However, the resonances of the proton on the ring nitrogen of the pyridoxal 5'-phosphate (peak A) and on the His-143 imidazole ring (peak B) of the E. coli enzyme are broader and more readily lost at low pH or higher temperatures than those of the porcine enzyme. The possible role of tautomerism in promoting such broadening is discussed. In the histidine mutant proteins, peak A of the pyridoxal 5'-phosphate form is too broad to see under most conditions but is clearly present in the pyridoxamine phosphate form. Peak B is missing in the 2 histidine mutants. Observation of nuclear Overhauser effects further confirms the identity of B as the resonance of HN epsilon 2 of His-143 and that of peak D at approximately 11.8 ppm as HN epsilon 2 of His-189. The mutant spectra also provide insight into electronic interactions between groups in and near the active site which confirm and supplement conclusions drawn from spectra of porcine cAspAT. While no clear loss of a peak was observed for the Trp-140 mutant in its free form, the spectrum of the succinate complex lacked a strong band at 11.26 ppm. This may represent the Trp-140 indole NH proton which has been shifted downfield by binding to a succinate carboxylate group. While our results confirm the basic similarity of cytosolic aspartate aminotransferase and E. coli aspartate aminotransferase 1H NMR spectra, they also point out differences that may be useful in identifying resonances. A large number of mutant proteins have been prepared for the E. coli enzyme. The present results provide essential information for future study of these mutants and for study of NMR spectra of isotopically labeled enzyme.
Databáze: MEDLINE