Abstrakt: |
In CsCl density gradients of lysates from competent Bacillus subtilis cells, which had been exposed to heterologous bacterial DNA, very little donor-recipient complex (DRC) formation could be detected. The present study demonstrates that photocrosslinking of such lysates by irradiation with long-wave UV light in the presence of 4,5',8-trimethylpsoralen results in a dramatic increase in the amount of heterologous DRC. This phenomenon may be interpreted as the stabilization of a pre-existing weak association between entered heterologous donor DNA and one recipient strand in unpaired regions of the chromosome. When a recombination-deficient mutant is used, the amount of stabilizable heterologous DRC is reduced to the same extent as the specific transforming activity of homologous DNA. Although the amount of stabilizable complex is related to the degree of homology between donor and recipient DNA, this relation is not a quantitative one. Probably the association is caused by very short regions of base pairing between the donor and recipient moieties in the complex. Heating of a lysate at 70 degrees prior to photocrosslinking prevents stabilization, apparently because the regions of base pairing are rapidly melted out. The results described in this paper can be best interpreted as the fixation of a process in which entered donor DNA in competent cells tries to find homologous stretches in the recipient chromosome. |