Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.

Autor: Martin GF, Cabana T, Ditirro FJ, Ho RH, Humbertson AO Jr
Jazyk: angličtina
Zdroj: The Journal of comparative neurology [J Comp Neurol] 1982 Jun 10; Vol. 208 (1), pp. 67-84.
DOI: 10.1002/cne.902080106
Abstrakt: Retrograde transport studies revealed that the nuclei pallidus, obscurus, and magnus raphae as well as the adjacent reticular formation innervate the spinal cord in the opposum. HRP-lesion experiments showed that a relatively large number of neurons within the nucleus obscurus raphae and closely adjacent areas of the nucleus reticularis gigantocellularis project through the ventrolateral white matter and that many cells within the nucleus magnus raphae, the nucleus reticularis gigantocellularis pars ventralis, and the nucleus reticularis pontis pars ventralis contribute axons to the dorsal half of the lateral funiculi. Neurons within the rostral pole of the nucleus magnus raphae and the adjacent nucleus reticularis pontis pars ventralis may project exclusively through the latter route. Each of the above-mentioned raphe and reticular nuclei contain nonindolaminergic as well as indolaminergic neurons (Crutcher and Humbertson, '78). When True-Blue was injected into the spinal cord and the brain processed for monoamine histofluorescence evidence for True-Blue was found in neurons of both types. Injections of 3H-leucine centered within the nuclei pallidus and obscurus raphae and/or the closely adjacent nucleus reticularis gigantocellularis labeled axons within autonomic nuclei and laminae IV-X. Labeled axons were particularly numerous within the intermediolateral cell column and within laminae IX and X. Injections of the caudoventral part of the nucleus magnus raphae or the adjacent nucleus reticularis gigantocellularis pars ventrialis labeled axons in the same areas as well as within laminae I-III. When the injection was placed within the rostral part of the nucleus magnus raphae or the adjacent nucleus reticularis pontis pars ventralis axons were labeled within laminae I-III and external zones of laminae IV-VII, but not within lamina IX. The immunohistofluorescence method revealed evidence for indolaminergic axons in each of the spinal areas labeled by injections of 3H-leucine into the raphe and adjacent reticular formation. They were particularly abundant within the intermediolateral cell column and within laminae IX and X. These data indicate that raphe spinal systems are chemically and connectionally heterogeneous.
Databáze: MEDLINE