Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes.

Autor: Vauquelin G, Cech SY, André C, Strosberg AD, Maguire ME
Jazyk: angličtina
Zdroj: Journal of cyclic nucleotide research [J Cyclic Nucleotide Res] 1982; Vol. 8 (3), pp. 149-62.
Abstrakt: Several homogeneous cell systems contain distinct subpopulations of beta-adrenergic receptors, distinguished by their relative sensitivity to N-ethylmaleimide (NEM) in the presence of agonist but not antagonist (G. Vauquelin and M.E. Maguire (1980) Mol. Pharmacol. 18, 363-369). The sensitivity to agonist/NEM inactivation requires receptor interaction with the magnesium-guanine nucleotide coupling proteins (G/F). We have investigated the effects of agonist/NEM treatment on Mg2+ and GTP modulation of receptor affinity in two such systems, turkey erythrocytes and murine S49 lymphoma cells. In each systems, the agonist/NEM-sensitive beta-receptor subpopulation exhibits both Mg2+ and GTP modulation of beta-receptor affinity for agonist. Further, Mg2+ and GTP are not competitive with regard to alteration of receptor affinity; that is, GTP can block the effect of Mg2+, but not vice versa. In contrast, the agonist/NEM-resistant beta-receptor subpopulation shows distinct differences in Mg2+ and GTP effects when the turkey and S49 systems are compared. The agonist/NEM-resistant population in S49 shows no effect of Mg2+ or GTP on beta-receptor affinity for agonist whereas the resistant beta-receptors of turkey erythrocytes still exhibit modulation by both GTP and Mg2+. Moreover, in this receptor population the actions of GTP and Mg2+ are apparently competitive, with increasing Mg2+ concentrations able to overcome the decrease in affinity induced by GTP. Thus, beta-receptor interaction with the metal/nucleotide coupling proteins may differ significantly in the two systems examined. An additional result of these experiments is the demonstration for S49 beta-receptors that free, unchelated GTP or GDP rather than MgGTP or MgGDP modulates receptor affinity for agonist.
Databáze: MEDLINE