Thermostability of mammalian brain ribosomes and the effects of nucleoside triphosphates on their heat-sensitivity.

Autor: Grove BK, Johnson TC, Gilbert BE
Jazyk: angličtina
Zdroj: The Biochemical journal [Biochem J] 1974 Feb; Vol. 137 (2), pp. 291-8.
DOI: 10.1042/bj1370291
Abstrakt: Mammalian brain ribosomes were found to be heat-labile. On preincubation of the ribosomes at 37 degrees C, their ability to participate in polypeptide-synthesis reactions was substantially diminished. Despite the sensitivity of ribosomal protein synthesis to heat-inactivation, preincubation resulted in no significant alterations in ribosomal sedimentation profiles or changes in the integrity of the ribosomal RNA. The thermolability of brain ribosomes was shown to be associated with their inability to bind both template RNA and aminoacyl-tRNA. Similar experiments with brain ribosomal subunits demonstrated that the small (40S) subunit was more sensitive to heat-inactivation than the large (60S) subunit. The presence of ATP (1mm) protected ribosomes from thermal inactivation, although this protection was shown to be temporary. The protection appeared to be specific to nucleoside triphosphates, since GTP and UTP also stabilized ribosomes to thermal denaturation whereas nucleoside diphosphates (ADP) and nucleoside monophosphates (AMP and cyclic AMP) did not alter ribosomal sensitivity to heat. Although 1mm concentrations of nucleoside triphosphates protected ribosomes from heat-inactivation, the presence of higher concentrations resulted in complete inactivation of ribosomal activity.
Databáze: MEDLINE