Resonance Raman studies of CO and O2 binding to elephant myoglobin (distal His(E7)----Gln).

Autor: Kerr EA, Yu NT, Bartnicki DE, Mizukami H
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 1985 Jul 15; Vol. 260 (14), pp. 8360-5.
Abstrakt: Carbon monoxide and dioxygen were employed as resonance Raman-visible ligands for probing the nature of the heme-binding site in elephant myoglobin, which has glutamine in the distal position (E7) instead of the usual histidine. The distal histidine (E7) residue has been thought to be responsible for weakening carbon monoxide binding to hemoproteins. It is of interest to see how the His(E7)----Gln replacement affects such parameters as nu(Fe-N epsilon), nu(Fe-CO), delta(Fe-C-O), nu(C-O), delta(Fe-O-O), and nu(O-O) vibrational frequencies and relative intensities. Elephant myoglobin has a CO affinity approximately 6 times higher than that for human/sperm whale myoglobin (Mb). If this enhanced affinity were solely due to the removal of some of the steric hindrance that normally tilts the CO off the heme axis, one would expect the nu(Fe-CO) frequency to decrease and the nu(C-O) frequency to increase relative to the corresponding values in sperm whale Mb. However, the opposite was found. In addition, strong enhancement of the Fe-C-O bending mode was observed. These results suggest that the Fe-C-O linkage remains distorted. In elephant Mb, new interactions resulting from the conformational change accompanying ligand binding may be responsible for the increased CO binding. Similar spectra were obtained for elephant and sperm whale oxymyoglobin. This suggests that the interactions of bound O2 are not markedly affected by the glutamine replacement.
Databáze: MEDLINE