From Dielectric to Electro-Responsive Thermoplastics: An Approach Based on Electro-Thermal Reorientation and Charged Gas Activation.

Autor: Gul M; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain., Fontana-Escartín A; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Arnau M; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Sans J; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Lanzalaco S; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Armelin E; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Chiesa E; Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia (PV), Italy., Genta I; Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia (PV), Italy., Pérez-Madrigal MM; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain., Alemán C; IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.; Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia (PV), Italy.; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
Jazyk: angličtina
Zdroj: ACS applied polymer materials [ACS Appl Polym Mater] 2024 Dec 10; Vol. 6 (24), pp. 15070-15081. Date of Electronic Publication: 2024 Dec 10 (Print Publication: 2024).
DOI: 10.1021/acsapm.4c02610
Abstrakt: The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials. First, the developed procedure has been exhaustively investigated for 3D printed poly(lactic acid) (PLA) and subsequently has been extended to 3D printed polypropylene (PP) and poly(ethylene terephthalate glycol) (PETG) specimens. FTIR and Raman spectroscopies, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurements confirmed that, while the electro-thermal reorientation mainly promotes the crystallinity of the samples, the charged gas activation oxidizes the C-O bonds at the surface and consequently modifies the surface morphology and wettability. Furthermore, cyclic voltammetry assays demonstrated that treated PLA, PP, and PETG are electro-responsive, even though the electrochemical activity was much higher for oxygen-containing polymers (PLA and PETG) than for the oxygen-free one (PP). Finally, as a proof of concept, treated 3D printed PLA specimens have been used as electrochemical sensors to detect dopamine (DA), an important neurotransmitter, in a concentration interval ranging from 50 to 1000 μM. The peak associated with the oxidation from DA to dopaminoquinone and the linearity of the calibration plot, which was constructed using the anodic peak current, proved that treated PLA is not only electro-responsive but also able to electrocatalyze the oxidation of DA.
Competing Interests: The authors declare the following competing financial interest(s): The authors declare that the physical treatment to transform insulating thermoplastics into semi-conducting thermoplastics was patented by the Universitat Politcnica de Catalunya and the University of Pavia (EP24382867).
(© 2024 The Authors. Published by American Chemical Society.)
Databáze: MEDLINE