Autor: |
Lauzier L; Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada., Munger L; Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada., Perron MP; Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada., Bertrand-Charette M; Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada., Sollmann N; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.; Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany., Schneider C; Noninvasive neurostimulation laboratory, Research Center of CHU de Québec - Université Laval, Neuroscience division, Quebec City, Canada.; School of Rehabilitation Science, Faculty of Medicine, Université Laval, Quebec City, Canada., Bonfert MV; Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics-Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.; LMU Center for Children with Medical Complexity-iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany., Beaulieu LD; Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada. |
Abstrakt: |
This review verified the extent, variety, quality and main findings of studies that have tested the neurophysiological and clinical effects of muscle tendon vibration (VIB) in individuals with sensorimotor impairments. The search was conducted on PubMed, CINAHL, and SportDiscuss up to April 2024. Studies were selected if they included humans with neurological impairments, applied VIB and used at least one measure of corticospinal excitability using transcranial magnetic stimulation (TMS). Two investigators assessed the studies' quality using critical appraisal checklists and extracted relevant data. The 10 articles included were diverse in populations and methods, generally rated as 'average' to 'good' quality. All studies reported an increased corticospinal excitability in the vibrated muscle, but the effects of VIB on non-vibrated muscles remain unclear. Positive clinical changes in response to VIB were reported in a few studies, such as a decreased spasticity and improved sensorimotor function. These changes were sometimes correlated with corticospinal effects, suggesting a link between VIB-induced plasticity and clinical improvements. Despite the limited and heterogeneous literature, this review supports the facilitatory influence of VIB on motor outputs controlling vibrated muscles, even with altered sensorimotor functions. It highlights knowledge gaps and suggests future research directions on VIB mechanisms and clinical implications. |