Enhanced iodinated disinfection byproducts formation in iodide/iodate-containing water undergoing UV-chloramine sequential disinfection: Machine learning-aided identification of reaction mechanisms.

Autor: Luo ZN; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., He H; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Zhang TY; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Wei XL; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Dong ZY; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China., Xu MY; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Zhao HX; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Zheng ZX; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Pan RJ; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., Hu CY; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China., Zeng C; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China., El-Din MG; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada., Xu B; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China. Electronic address: tjwenwu@tongji.edu.cn.
Jazyk: angličtina
Zdroj: Water research [Water Res] 2024 Dec 14; Vol. 272, pp. 122975. Date of Electronic Publication: 2024 Dec 14.
DOI: 10.1016/j.watres.2024.122975
Abstrakt: Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I - and IO 3 - (designated as I - /IO 3 - in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters. Shapley additive explanation (SHAP) analysis, partial dependence plots (PDPs), and individual conditional expectation (ICE) analysis were then employed to explain the models' workings and feature interactions, aiding in identification and quantification of underlying mechanisms. A type of DOM component (namely DC_b) was found as the greatest contributor and identified as reduced quinones associated with broken-down lignin within higher plant-derived fulvic substance, serving as precursors and electron shuttles for I-DBP formation. Based on the interactional effects acquired from explanation results, the ejection of e - aq from excited DOM and pre-existing I - in the I - /IO 3 - system were identified responsible for the enhanced generation of I-DBPs compared to that in the I - or IO 3 - alone systems; extra DOM scavenged reactive iodine species (RIS), contributing to a limited enhancement. These findings and the methodology developed here together enhance our understanding of the mechanisms how DOM limitedly promotes I-DBP formation during UV-chloramine sequential disinfection of I - /IO 3 - -containing water and facilitate effective online monitoring in the future.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE