Theoretical insights into Z-scheme BAs/GeC van der Waals heterostructure for high-efficiency solar cell.

Autor: Chaoui K; Guelma Physics Laboratory (GPL), Département des Sciences de la Matière, Faculté des Mathématiques, de l'informatique et des Sciences de la Matière, Université 8 Mai 1945 BP 401 Guelma Algeria chaoui.khawla@univ-guelma.dz., Zanat K; Guelma Physics Laboratory (GPL), Département des Sciences de la Matière, Faculté des Mathématiques, de l'informatique et des Sciences de la Matière, Université 8 Mai 1945 BP 401 Guelma Algeria chaoui.khawla@univ-guelma.dz., Elaggoune W; Laboratoire de Physique des Matériaux (L2PM), Département des Sciences de la Matière, Faculté des Mathématiques, de l'informatique et des Sciences de la Matière, Université 8 Mai 1945 BP 401 Guelma Algeria., Henrard L; Departement of Physics, Namur Institute of Structured Matter (NISM), University of Namur Rue de Bruxelles 61 5000 Namur Belgium., Achehboune M; Departement of Physics, Namur Institute of Structured Matter (NISM), University of Namur Rue de Bruxelles 61 5000 Namur Belgium.
Jazyk: angličtina
Zdroj: RSC advances [RSC Adv] 2024 Dec 17; Vol. 14 (53), pp. 39625-39635. Date of Electronic Publication: 2024 Dec 17 (Print Publication: 2024).
DOI: 10.1039/d4ra08369e
Abstrakt: The urgent need for solar electricity production is critical for ensuring energy security and mitigating climate change. Achieving the optimal optical bandgap and effective carrier separation, essential for high-efficiency solar cells, remains a significant challenge when utilizing a single material. In this study, we design a BAs/GeC heterostructure using density functional theory. Our findings indicate that the BAs/GeC heterostructure exhibits direct bandgap semiconductor characteristics. Notably, the BAs/GeC heterostructure demonstrates excellent optical absorption within the infrared and visible light spectrum. Moreover, significant carrier spatial separation was suggested, facilitated by a Z-scheme pathway. Furthermore, applying biaxial strains revealed that the BAs/GeC heterostructure is unstable under compressive strain. However, the electronic and optical properties can be tuned using tensile biaxial strains. The calculated power conversion efficiency (PCE) of the BAs/GeC heterostructure is approximately 31%, as determined by the Scharber method. Hence, the combination of an appropriate bandgap, substantial carrier separation, and superior photoelectric conversion efficiency positions the BAs/GeC heterostructure as a promising candidate for high-efficiency solar cells.
Competing Interests: There are no conflicts to declare.
(This journal is © The Royal Society of Chemistry.)
Databáze: MEDLINE