Autor: |
Kayyil Veedu M; Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, AMUTech, 13013 Marseille, France. jerome.wenger@fresnel.fr., Lavilley G; Poly-Dtech, 204 avenue de Colmar, 67100 Strasbourg, France.; Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Cedex 2, 67087 Strasbourg, France., Sy M; Poly-Dtech, 204 avenue de Colmar, 67100 Strasbourg, France., Goetz J; Poly-Dtech, 204 avenue de Colmar, 67100 Strasbourg, France., Charbonnière LJ; Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Cedex 2, 67087 Strasbourg, France., Wenger J; Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, AMUTech, 13013 Marseille, France. jerome.wenger@fresnel.fr. |
Abstrakt: |
Lanthanide nanoparticles (LnNPs) feature sharp emission lines together with millisecond emission lifetimes which make them promising luminescent probes for biosensing and bioimaging. Although LnNPs are attracting much interest, their photoluminescence properties at the single nanoparticle level remain largely unexplored. Here, we employ fluorescence correlation spectroscopy (FCS) and photoluminescence burst analysis to investigate the photodynamics of Sm- and Eu-based LnNPs with single nanoparticle sensitivity and microsecond resolution. By recording the photoluminescence intensity and the number of contributing LnNPs, we compute the photoluminescence brightness per individual nanoparticle and estimate the actual number of emitting centers per nanoparticle. Our approach overcomes the challenges associated with ensemble-averaged techniques and provides insights into LnNP photodynamics. Moreover, we demonstrate our microscope's ability to detect and analyze LnNPs at the single nanoparticle level, monitoring both photoluminescence brightness and burst duration. These findings expand our understanding of LnNPs and pave the way for advanced biosensing applications at the single nanoparticle level. |