Autor: |
Sena-Torralba A; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain., Parrilla M; A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium.; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium., Hernanz-Grimalt A; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain., Steijlen A; A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium.; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium., Ortiz-Zapater E; Department of Biochemistry and Molecular Biology, Universitat de Valencia, Avda Blasco Ibáñez 15, 46010 Valencia, Spain.; Instituto Investigación Hospital Clínico-INCLIVA, C. de Menéndez y Pelayo, 4, El Llano del Real, 46010 Valencia, Spain., Cabaleiro-Otero C; Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain., López-Riquelme N; Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain., Cerveró-Ferragut S; Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain., Maquieira Á; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain., De Wael K; A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium.; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium., Morais S; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. |
Abstrakt: |
Chronic wound management requires continuous monitoring to assess healing and guide treatment. We developed a hollow microneedle array patch integrated with a lateral flow immunoassay strip to address the need for convenient, home-based diagnostics. This device extracts wound exudate directly from the wound matrix, overcoming the limitations of conventional swab sampling, which relies on surface exudate collection. The patch provides a minimally invasive, rapid solution to assess the wound healing phase. The immunoassay delivers a colorimetric signal visible to the naked eye, facilitating straightforward interpretation by clinicians within 10 min. In a clinical study involving 90 patients, matrix metalloproteinase 8 (MMP-8) was identified as a critical biomarker, achieving 80.3% sensitivity in detecting the proliferative phase. A specific lateral flow immunoassay for MMP-8 was developed with a detection limit of 0.7 ng/mL, lower than the threshold level for the proliferative healing phase (164.7 ng/mL). The hollow microneedle array patch was 3D-printed for cost-efficiency (less than €0.10 per patch) with a height of 865 ± 6 μm, allowing for a painless, easy sampling. Mechanical tests confirmed the durability of the patch, while cytotoxicity assays demonstrated its biocompatibility. Prevalidation using an ex vivo skin model showed the patch could extract 61 ± 6 μL of exudate, with a 122% recovery rate for MMP-8 detection, highlighting its efficiency in biomarker extraction. This approach represents a significant advance in decentralized wound care, offering a low-cost, user-friendly tool for at-home monitoring of chronic wounds, potentially improving early intervention and reducing hospital visits. |