Micro-jet formation induced by the interaction of a spherical and toroidal cavitation bubble.

Autor: Mur J; Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany; Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, Ljubljana, 1000, Slovenia., Bußmann A; Chair of Aerodynamics and Fluid Mechanics, TUM School of Engineering and Design, Technical University of Munich, Garching bei München, 85748, Germany; Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Garching bei München, 85748, Germany., Paula T; Chair of Aerodynamics and Fluid Mechanics, TUM School of Engineering and Design, Technical University of Munich, Garching bei München, 85748, Germany; Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Garching bei München, 85748, Germany., Adami S; Chair of Aerodynamics and Fluid Mechanics, TUM School of Engineering and Design, Technical University of Munich, Garching bei München, 85748, Germany; Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Garching bei München, 85748, Germany., Adams NA; Chair of Aerodynamics and Fluid Mechanics, TUM School of Engineering and Design, Technical University of Munich, Garching bei München, 85748, Germany; Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Garching bei München, 85748, Germany., Petkovsek R; Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, Ljubljana, 1000, Slovenia. Electronic address: rok.petkovsek@fs.uni-lj.si., Ohl CD; Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany; Research Campus STIMULATE, University of Magdeburg, Otto-Hahn-Straße 2, Magdeburg, 39106, Germany. Electronic address: claus-dieter.ohl@ovgu.de.
Jazyk: angličtina
Zdroj: Ultrasonics sonochemistry [Ultrason Sonochem] 2024 Dec 06; Vol. 112, pp. 107185. Date of Electronic Publication: 2024 Dec 06.
DOI: 10.1016/j.ultsonch.2024.107185
Abstrakt: We investigate experimentally and numerically the interaction between a spherical cavitation bubble and a wall-bounded toroidal cavitation bubble. We demonstrate that shock wave focusing following toroidal bubble initiation induces the formation of micro-jets that pierce the spherical bubble in the torus-axis direction away from the surface, strongest in the anti-phase scenario. The velocity of micro-jets is determined by the initial standoff distance of the spherical bubble from the wall and thus from the toroidal bubble, with peak jet velocities approaching 1000m/s. The micro-jets are triggered by the complex interaction between the torus shock wave and the surface of the spherical bubble. Additionally, the formation of secondary cavitation appears to significantly enhance the micro-jets compared to scenarios without secondary cavitation. Following the formation of micro-jets, a subsequent broad jet pierces the spherical bubble, marking the onset of its collapse. After the collapse, we observe an amplified rebound phase resulting in a more than twofold increase of the bubble volume compared to the initial bubble.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024. Published by Elsevier B.V.)
Databáze: MEDLINE