The issue of climate change and the spread of tropical diseases in Europe and Italy: vector biology, disease transmission, genome-based monitoring and public health implications.

Autor: Pavia G; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Branda F; Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy., Ciccozzi A; Department of Biomedical Sciences, University of Sassari, Sassari, Italy., Romano C; Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy., Locci C; Department of Biomedical Sciences, University of Sassari, Sassari, Italy.; Department of Veterinary Medicine, University of Sassari, Sassari, Italy., Azzena I; Department of Veterinary Medicine, University of Sassari, Sassari, Italy., Pascale N; Department of Veterinary Medicine, University of Sassari, Sassari, Italy., Marascio N; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Quirino A; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Gigliotti S; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Divenuto F; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Matera G; Department of Health Sciences, Unit of Clinical Microbiology, 'Magna Græcia' University of Catanzaro - 'Renato Dulbecco' Teaching Hospital, Catanzaro, Italy., Giovanetti M; Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy.; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.; Climate Amplified Diseases And Epidemics (CLIMADE), Brasilia, Brazil., Casu M; Department of Veterinary Medicine, University of Sassari, Sassari, Italy., Sanna D; Department of Biomedical Sciences, University of Sassari, Sassari, Italy., Ceccarelli G; Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, Rome, Italy., Ciccozzi M; Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy., Scarpa F; Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
Jazyk: angličtina
Zdroj: Infectious diseases (London, England) [Infect Dis (Lond)] 2024 Dec 11, pp. 1-16. Date of Electronic Publication: 2024 Dec 11.
DOI: 10.1080/23744235.2024.2437027
Abstrakt: Background: Climate change significantly influences the distribution and severity of tropical diseases. Rising temperatures, changing precipitation patterns, and extreme weather events are transforming the habitats of vectors like mosquitoes and ticks, promoting their proliferation and geographic spread. These changes have facilitated the resurgence of diseases such as malaria, dengue, and chikungunya fever in previously unaffected areas, including parts of Europe and Italy.
Objective and Methods: This review aims to explore the relationship between climate change and the spread of vector-borne and tropical parasitic diseases across Europe, with a particular focus on Italy. Recent studies are analyzed to identify emerging trends in disease transmission influenced by shifting climates. Genome-based monitoring and predictive models incorporating climatic and ecological data are highlighted as methods to enhance disease surveillance and preparedness.
Results: The analysis reveals a clear link between climate change and altered disease patterns. The proliferation of vectors into new territories is associated with increased incidence of diseases. Genome-based tools demonstrate their utility in tracking the evolution of pathogens, particularly regarding changes in virulence, drug resistance, and adaptability to new climates. Predictive models have proven effective in anticipating outbreaks and supporting timely public health interventions.
Conclusions: To mitigate the risks posed by climate-induced changes in disease dynamics, continuous monitoring and international collaboration are essential. Strengthening health systems' resilience through mitigation and adaptation strategies is crucial for preventing future epidemics. These insights contribute to the development of sustainable long-term policies for managing tropical diseases in the context of climate change, ensuring timely responses to public health emergencies.
Databáze: MEDLINE