Ultra-high-resolution 40 keV virtual monoenergetic imaging using spectral photon-counting CT in high-risk patients for coronary stenoses.

Autor: Fahrni G; Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.; Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France., Boccalini S; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.; Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France., Lacombe H; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.; Philips Healthcare, Suresnes, France., de Oliveira F; Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France., Houmeau A; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France., Francart F; Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France., Villien M; Philips Healthcare, Suresnes, France., Rotzinger DC; Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland., Robert A; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France., Douek P; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.; Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France., Si-Mohamed SA; University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France. salim.si-mohamed@chu-lyon.fr.; Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France. salim.si-mohamed@chu-lyon.fr.
Jazyk: angličtina
Zdroj: European radiology [Eur Radiol] 2024 Dec 11. Date of Electronic Publication: 2024 Dec 11.
DOI: 10.1007/s00330-024-11237-x
Abstrakt: Objectives: To assess the image quality of ultra-high-resolution (UHR) virtual monoenergetic images (VMIs) at 40 keV compared to 70 keV, using spectral photon-counting CT (SPCCT) and dual-layer dual-energy CT (DECT) for coronary computed tomography angiography (CCTA).
Methods and Materials: In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days. 40 keV and 70 keV VMIs were reconstructed for both modalities. Stenoses, blooming artefacts, and image quality were compared between all four reconstructions.
Results: Twenty-six patients (4 women [15%]) and 28 coronary stenoses (mean stenosis of 56% ± 16%) were included. 40 keV SPCCT gave an overall higher quality score (5 [5, 5]) than 70 keV SPCCT (5 [4, 5], 40 keV DECT (4 [3, 4]) and 70 keV SPCCT (4 [4, 5]), p < 0.001). Less variability in stenosis measurement was found with SPCCT between 40 keV and 70 keV (bias: -1% ± 3%, LoA: 6%) compared with DECT (-6% ± 8%, LoA 16%). 40 keV SPCCT vs 40 keV DECT showed a -3% ± 6% bias, whereas 40 keV SPCCT vs 70 keV DECT showed a -8% ± 6% bias. From 70 keV to 40 keV, blooming artefacts did not increase with SPCCT (mean +2% ± 5%, p = 0.136) whereas they increased with DECT (mean +7% ± 6%, p = 0.005).
Conclusion: UHR 40 keV SPCCT VMIs outperformed 40 keV and 70 keV DECT VMIs for assessing coronary artery stenoses, with no impairment compared to 70 keV SPCCT VMIs.
Key Points: Question Use of low virtual mono-energetic images at 40 keV using spectral dual-energy and photon-counting CT systems is not yet established for diagnosing coronary artery stenosis. Findings UHR 40 keV SPCCT enhances diagnostic accuracy in coronary artery assessment. Clinical relevance By combining spectral sensitivity with lower virtual mono-energetic imaging and ultra-high spatial resolution, SPCCT enhances coronary artery assessment, potentially leading to more accurate diagnoses and better patient outcomes in cardiovascular imaging.
Competing Interests: Compliance with ethical standards. Guarantor: The scientific guarantor of this publication is Salim A. Si-Mohamed. Conflict of interest: Marjorie Villien and Hugo Lacombe are employed by the manufacturer of the SPCCT system used in this report. No other conflict of interest is to be reported. Statistics and biometry: One of the authors has significant statistical expertise. Informed consent: Written informed consent was obtained from all subjects (patients) in this study. Ethical approval: Our local institutional review board (IRB) approved the study (Hospices Civils de Lyon, approval number: 2019-A02945–52). Study subjects or cohorts overlap: Study subjects have been previously reported. Methodology: Prospective Diagnostic Performed at one institution
(© 2024. The Author(s).)
Databáze: MEDLINE