Synthesis, Characterization, and CO 2 Methanation Over Hierarchical ZSM-5-NiCoAl Layered Double Hydroxide Nanocomposites: Improvement of C-C Coupling to Ethane.

Autor: Prasanseang W; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand., Maineawklang N; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand., Liwatthananukul N; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand., Somsri S; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand., Wattanakit C; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand.
Jazyk: angličtina
Zdroj: Chemphyschem : a European journal of chemical physics and physical chemistry [Chemphyschem] 2024 Dec 10, pp. e202400926. Date of Electronic Publication: 2024 Dec 10.
DOI: 10.1002/cphc.202400926
Abstrakt: To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets. The effect of the weight ratio of NiCo-LDHs precursor to ZSM-5 on the composite properties has been studied. The results show that 45 wt.% LDHs (ZSM-5@NiCoAl-LDHs-45) is the most suitable condition for preparing NiCoAl-LDHs/ZSM-5 composite, which promotes a strong interaction between bimetallic NiCo and hierarchical ZSM-5. The ZSM-5@NiCoAl-LDHs-45 showed a BET surface of 386 m 2  g -1 , in which the surface area has been re-allocated between microspores and mesopores due to the presence of NiCoAl-LDHs composite. The catalyst was also tested for CO 2 methanation at 380 °C under atmospheric hydrogen pressure. The results show that the catalyst could provide CO 2 conversion of up to 40 % at WSHV of 2.91 h -1 . Interestingly, it could not only promote methane but also provide a high selectivity of ethane, approximately 20.4 %. Moreover, the excellent catalytic stability of ethane production was illustrated over 24 hours of time-on-stream (TOS).
(© 2024 Wiley-VCH GmbH.)
Databáze: MEDLINE