Clinically Implemented Sensing-based Initial Programming of Deep Brain Stimulation for Parkinson's Disease: A Retrospective Study.

Autor: Swinnen BEKS; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA., Fuentes A; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA., Volz MM; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA., Heath S; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA., Starr PA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Department of Physiology, University of California San Francisco, San Francisco, CA, USA., Little SJ; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA., Ostrem JL; University of California San Francisco Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of California San Francisco Weill Institute for Neurosciences, Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA. Electronic address: jill.ostrem@ucsf.edu.
Jazyk: angličtina
Zdroj: Neuromodulation : journal of the International Neuromodulation Society [Neuromodulation] 2024 Dec 02. Date of Electronic Publication: 2024 Dec 02.
DOI: 10.1016/j.neurom.2024.11.002
Abstrakt: Objectives: Initial deep brain stimulation (DBS) programming using a monopolar review is time-consuming, subjective, and burdensome. Incorporating neurophysiology has the potential to expedite, objectify, and automatize initial DBS programming. We aimed to assess the feasibility and performance of clinically implemented sensing-based initial DBS programming for Parkinson's disease (PD).
Materials and Methods: We conducted a single-center retrospective study in 15 patients with PD (25 hemispheres) implanted with a sensing-enabled neurostimulator in whom initial subthalamic nucleus/globus pallidus pars interna DBS programming was guided by beta power in real-time local field potential recordings, instead of a monopolar review.
Results: The initial sensing-based programming visit lasted on average 42.2 minutes (SD 18) per hemisphere. During the DBS optimization phase, a conventional monopolar clinical review was not required in any patients. The initial stimulation contact level remained the same at the final follow-up visit in all hemispheres except three. The final amplitude was on average 0.8 mA (SD 0.9) higher than initially set after the original sensing-based programming visit. One year after surgery, off-medication International Parkinson and Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III total score, tremor subscore, MDS-UPDRS IV, and levodopa-equivalent dose improved by 47.0% (p < 0.001), 77.7% (p = 0.001), 51.1% (p = 0.006), and 44.8% (p = 0.011) compared with preoperatively using this approach.
Conclusions: This study shows that sensing-based initial DBS programming for PD is feasible and rapid, and selected clinically effective contacts in most patients, including those with tremor. Technologic innovations and practical developments could improve sensing-based programming.
Competing Interests: Conflict of Interest Simon J. Little has received speaking honoraria from Medtronic and is a paid consultant for Iota Biosciences. Jill L. Ostrem has received research and educational grant funding from Medtronic. Monica M. Volz has received speaking honoraria from Medtronic. The remaining authors report no conflict of interest.
(Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE