IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review.
Autor: | Liu YJ; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China., Wang HY; Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China., Wang R; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China., Yu J; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China., Shi JJ; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China., Chen RY; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China., Yang GJ; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China. Electronic address: yangguanjun@nbu.edu.cn., Chen J; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China. Electronic address: chenjiong@nbu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of biological macromolecules [Int J Biol Macromol] 2025 Jan; Vol. 284 (Pt 1), pp. 138099. Date of Electronic Publication: 2024 Nov 26. |
DOI: | 10.1016/j.ijbiomac.2024.138099 |
Abstrakt: | In the last decade, research has clarified the binding interactions between immunoglobulin E (IgE) and its high-affinity receptor, the FcεRI alpha chain (FcεRI). The formation of the IgE-FcεRI complex is crucial in the context of atopic allergies, linking allergen recognition to cellular activation and disease manifestation. Consequently, pharmacological strategies that disrupt these interactions are vital for managing atopic conditions. Historically, the complexity of the IgE-FcεRI binding process and challenges in producing functional recombinant derivatives has complicated data interpretation. However, advancements in structural biology, protein engineering, and immunological studies have enhanced our understanding of these protein-protein interactions (PPI), facilitating the development of more effective therapies. The introduction of anti-IgE therapies underscores the significance of the IgE-FcεRI PPI in allergic asthma. IgE, that is present locally and systemically, serves as a sensory mechanism in the adaptive immune response, particularly in mast cells (MCs) and basophils. When bound to FcεRI, IgE enables rapid memory responses to allergens, but dysregulation can lead to severe allergic asthma. Thus, the reactivity of IgE sensors can be finely modulated using various IgE-associated molecules. This review explores the mechanisms underlying IgE-dependent MC activation and its regulation by these molecules, including the latest therapeutic candidates under investigation. Competing Interests: Declaration of competing interest The authors declare no conflicts of interest. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |