Enhanced Diabetes Detection and Blood Glucose Prediction Using TinyML-Integrated E-Nose and Breath Analysis: A Novel Approach Combining Synthetic and Real-World Data.

Autor: Gudiño-Ochoa A; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico., García-Rodríguez JA; Centro Universitario del Sur (CUSUR), Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico., Cuevas-Chávez JI; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico., Ochoa-Ornelas R; Systems and Computation Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico., Navarrete-Guzmán A; Electrical and Electronic Engineering Department, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico.; Academic Unit of Basic Sciences and Engineering, Universidad Autónoma de Nayarit, Tepic 63000, Mexico., Vidrios-Serrano C; Academic Unit of Basic Sciences and Engineering, Universidad Autónoma de Nayarit, Tepic 63000, Mexico., Sánchez-Arias DA; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
Jazyk: angličtina
Zdroj: Bioengineering (Basel, Switzerland) [Bioengineering (Basel)] 2024 Oct 25; Vol. 11 (11). Date of Electronic Publication: 2024 Oct 25.
DOI: 10.3390/bioengineering11111065
Abstrakt: Diabetes mellitus, a chronic condition affecting millions worldwide, necessitates continuous monitoring of blood glucose level (BGL). The increasing prevalence of diabetes has driven the development of non-invasive methods, such as electronic noses (e-noses), for analyzing exhaled breath and detecting biomarkers in volatile organic compounds (VOCs). Effective machine learning models require extensive patient data to ensure accurate BGL predictions, but previous studies have been limited by small sample sizes. This study addresses this limitation by employing conditional generative adversarial networks (CTGAN) to generate synthetic data from real-world tests involving 29 healthy and 29 diabetic participants, resulting in over 14,000 new synthetic samples. These data were used to validate machine learning models for diabetes detection and BGL prediction, integrated into a Tiny Machine Learning (TinyML) e-nose system for real-time analysis. The proposed models achieved an 86% accuracy in BGL identification using LightGBM (Light Gradient Boosting Machine) and a 94.14% accuracy in diabetes detection using Random Forest. These results demonstrate the efficacy of enhancing machine learning models with both real and synthetic data, particularly in non-invasive systems integrating e-noses with TinyML. This study signifies a major advancement in non-invasive diabetes monitoring, underscoring the transformative potential of TinyML-powered e-nose systems in healthcare applications.
Databáze: MEDLINE