Magnetic Field/Ultrasound-Responsive Fe 3 O 4 Microbubbles for Targeted Mechanical/Catalytic Removal of Bacterial Biofilms.

Autor: Lu L; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China., Liu Y; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China., Chen X; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China., Xu F; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China., Zhang Q; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China., Yin Z; Department of Orthopaedic, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China., Yuwen L; State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Jazyk: angličtina
Zdroj: Nanomaterials (Basel, Switzerland) [Nanomaterials (Basel)] 2024 Nov 15; Vol. 14 (22). Date of Electronic Publication: 2024 Nov 15.
DOI: 10.3390/nano14221830
Abstrakt: Conventional antibiotics are limited by drug resistance, poor penetration, and inadequate targeting in the treatment of bacterial biofilm-associated infections. Microbubble-based ultrasound (US)-responsive drug delivery systems can disrupt biofilm structures and enhance antibiotic penetration through cavitation effects. However, currently developed US-responsive microbubbles still depend on antibiotics and lack targeting capability. In this work, magnetic field/ultrasound (MF/US)-responsive Fe 3 O 4 microbubbles (FMB) were constructed based on Fe 3 O 4 nanoparticles (NPs) with superparamagnetic and peroxidase-like catalytic properties. In vitro experiments demonstrated that FMB can be targeted to methicillin-resistant Staphylococcus aureus (MRSA) biofilms by the direction of MF. Upon US irradiation, FMB collapse due to inertial cavitation and generate mechanical forces to disrupt the structure of MRSA biofilms and releases Fe 3 O 4 NPs, which catalyze the generation of reactive oxygen species (ROS) from H 2 O 2 in the biofilm microenvironment and kill the bacteria within the biofilm. In a mouse biofilm infection model, FMB efficiently destroyed MRSA biofilms grown in subcutaneous catheters with the MF and US. Magnetic-targeted mechanical/catalytic therapy based on FMB provides a promising strategy for effectively combating bacterial biofilm infection.
Databáze: MEDLINE