Further reduction in soil bacterial diversity under severe acidification in European temperate forests.
Autor: | Rousseau M; Natural Resources Department, Faculty of Geo-Information Science and Earth Observation University of Twente Enschede The Netherlands., Siegenthaler A; Natural Resources Department, Faculty of Geo-Information Science and Earth Observation University of Twente Enschede The Netherlands., Skidmore AK; Natural Resources Department, Faculty of Geo-Information Science and Earth Observation University of Twente Enschede The Netherlands., de Groot GA; Wageningen Environmental Research Wageningen University & Research Wageningen The Netherlands., Laros I; Wageningen Environmental Research Wageningen University & Research Wageningen The Netherlands. |
---|---|
Jazyk: | angličtina |
Zdroj: | European journal of soil science [Eur J Soil Sci] 2024 Nov-Dec; Vol. 75 (6), pp. e70005. Date of Electronic Publication: 2024 Nov 08. |
DOI: | 10.1111/ejss.70005 |
Abstrakt: | Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%-9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%-0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair. (© 2024 The Author(s). European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.) |
Databáze: | MEDLINE |
Externí odkaz: |