Enhanced bactericidal effects of povidone-iodine in the presence of silver ions.

Autor: Cho J; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea., Kang D; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea., Kong U; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea., Lee J; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea., Kim J; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea., Lee C; School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. Electronic address: leechangha@snu.ac.kr.
Jazyk: angličtina
Zdroj: Chemosphere [Chemosphere] 2024 Nov; Vol. 368, pp. 143734. Date of Electronic Publication: 2024 Nov 13.
DOI: 10.1016/j.chemosphere.2024.143734
Abstrakt: The rising prevalence of antibiotic-resistant infections worldwide necessitates the development of innovative antimicrobial systems for effective pathogen control. This study investigates the synergistic bactericidal effects of a combined system comprising povidone-iodine (PVP-I) and silver ions (Ag(I)). The PVP-I/Ag(I) system exhibited enhanced bactericidal activity against four key surrogate bacterial species: two Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). Our experiments revealed that Ag(I) interacts with iodide ions (I - ) to form silver iodide (AgI). This reaction promotes the formation of hypoiodous acid (HOI), a more potent bactericidal agent than other reactive iodine species (RIS), by shifting the equilibrium of RIS released from PVP-I. Under representative conditions ([PVP-I] 0  = 1 mg/L, [Ag(I)] 0  = 5 μM, pH = 7.3), the concentration of HOI in the PVP-I/Ag(I) system was 2.4-3.9 times higher than in the PVP-I system alone, aligning with theoretical predictions. The bactericidal efficacy of the PVP-I/Ag(I) system was influenced by pH variations, affecting HOI formation. This system represents a promising tool for rapid and effective microbial control, potentially enhancing public health outcomes.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE