Northern Blotting: Protocols for Radioactive and Nonradioactive Detection of RNA.

5′ exonucleases. Genes Dev 13:2148–2158. https://doi.org/10.1101/gad.13.16.2148. (PMID: 10.1101/gad.13.16.214810465791316947)
Beelman CA, Parker R (1994) Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J Biol Chem 269:9687–9692. https://doi.org/10.1016/S0021-9258(17)36937-5. (PMID: 10.1016/S0021-9258(17)36937-58144558)
Muhlrad D, Parker R (1994) Premature translational termination triggers mRNA decapping. Nature 370:578–581. https://doi.org/10.1038/370578a0. (PMID: 10.1038/370578a08052314)
He F, Celik A, Wu C et al (2018) General decapping activators target different subsets of inefficiently translated mRNAs. elife 7. https://doi.org/10.7554/eLife.34409.
Serdar LD, Whiteside DL, Baker KE (2016) ATP hydrolysis by UPF1 is required for efficient translation termination at premature stop codons. Nat Commun 7:14021. https://doi.org/10.1038/ncomms14021. (PMID: 10.1038/ncomms14021280089225196439)
Coller J, Parker R (2005) General translational repression by activators of mRNA decapping. Cell 122:875–886. https://doi.org/10.1016/j.cell.2005.07.012. (PMID: 10.1016/j.cell.2005.07.012161792571853273)
Presnyak V, Alhusaini N, Chen YH et al (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124. https://doi.org/10.1016/j.cell.2015.02.029. (PMID: 10.1016/j.cell.2015.02.029257689074359748)
Foretek D, Wu J, Hopper AK et al (2016) Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA 22:339–349. https://doi.org/10.1261/rna.054973.115. (PMID: 10.1261/rna.054973.115267299224748812)
Hopper AK, Kurjan J (1981) tRNA synthesis: identification of in vivo precursor tRNAs from parental and mutant yeast strains. Nucleic Acids Res 9:1019–1029. https://doi.org/10.1093/nar/9.4.1019. (PMID: 10.1093/nar/9.4.10197015284326730)
Pluta K, Lefebvre O, Martin NC et al (2001) Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 21:5031–5040. https://doi.org/10.1128/MCB.21.15.5031-5040.2001. (PMID: 10.1128/MCB.21.15.5031-5040.20011143865987229)
Kufel J, Allmang C, Chanfreau G et al (2000) Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol 20:5415–5424. https://doi.org/10.1128/MCB.20.15.5415-5424.2000. (PMID: 10.1128/MCB.20.15.5415-5424.20001089148285993)
Henras AK, Capeyrou R, Henry Y et al (2004) Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10:1704–1712. https://doi.org/10.1261/rna.7770604. (PMID: 10.1261/rna.7770604153888731370658)
Neil H, Malabat C, d’Aubenton-Carafa Y et al (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042. https://doi.org/10.1038/nature07747. (PMID: 10.1038/nature0774719169244)
Berretta J, Pinskaya M, Morillon A (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22:615–626. https://doi.org/10.1101/gad.458008. (PMID: 10.1101/gad.458008183164782259031)
Geisler S, Lojek L, Khalil AM et al (2012) Decapping of long noncoding RNAs regulates inducible genes. Mol Cell 45:279–291. https://doi.org/10.1016/j.molcel.2011.11.025. (PMID: 10.1016/j.molcel.2011.11.025222260513278590)
Wyers F, Rougemaille M, Badis G et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737. https://doi.org/10.1016/j.cell.2005.04.030. (PMID: 10.1016/j.cell.2005.04.03015935759)
Marquardt S, Hazelbaker DZ, Buratowski S (2011) Distinct RNA degradation pathways and 3′ extensions of yeast non-coding RNA species. Transcription 2:145–154. https://doi.org/10.4161/trns.2.3.16298. (PMID: 10.4161/trns.2.3.16298218262863149692)
Wery M, Descrimes M, Vogt N et al (2016) Nonsense-mediated decay restricts LncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol Cell 61:379–392. https://doi.org/10.1016/j.molcel.2015.12.020. (PMID: 10.1016/j.molcel.2015.12.020268055754747904)
Holtke HJ, Kessler C (1990) Non-radioactive labeling of RNA transcripts in vitro with the hapten digoxigenin (DIG); hybridization and ELISA-based detection. Nucleic Acids Res 18:5843–5851. https://doi.org/10.1093/nar/18.19.5843. (PMID: 10.1093/nar/18.19.58432216776332324)
Andjus S, Szachnowski U, Vogt N et al (2024) Pervasive translation of Xrn1-sensitive unstable long noncoding RNAs in yeast. RNA 30:662–679. https://doi.org/10.1261/rna.079903.123. (PMID: 10.1261/rna.079903.1233844311511098462)
Wery M, Gautier C, Descrimes M et al (2018) Bases of antisense lncRNA-associated regulation of gene expression in fission yeast. PLoS Genet 14:e1007465. https://doi.org/10.1371/journal.pgen.1007465. (PMID: 10.1371/journal.pgen.1007465299756846049938)
Wery M, Gautier C, Descrimes M et al (2018) Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24:196–208. https://doi.org/10.1261/rna.063446.117. (PMID: 10.1261/rna.063446.117291140195769747)
Szachnowski U, Andjus S, Foretek D et al (2019) Endogenous RNAi pathway evolutionarily shapes the destiny of the antisense lncRNAs transcriptome. Life Sci Alliance 2:e201900407. https://doi.org/10.26508/lsa.201900407. (PMID: 10.26508/lsa.201900407314624006713810)
Sayani S, Janis M, Lee CY et al (2008) Widespread impact of nonsense-mediated mRNA decay on the yeast intronome. Mol Cell 31:360–370. https://doi.org/10.1016/j.molcel.2008.07.005. (PMID: 10.1016/j.molcel.2008.07.005186919682600495)
Felici F, Cesareni G, Hughes JM (1989) The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol Cell Biol 9:3260–3268. https://doi.org/10.1128/mcb.9.8.3260-3268.1989. (PMID: 10.1128/mcb.9.8.3260-3268.19892477683362370) -->
Contributed Indexing: Keywords: 32P-labelled oligonucleotide; Digoxigenin; Long noncoding RNA; Nonradioactive Northern blotting; Northern blotting; Total RNA extraction; Xrn1-sensitive lncRNA; Yeast; mRNA decay
Substance Nomenclature: 63231-63-0 (RNA)
0 (Phosphorus Radioisotopes)
NQ1SX9LNAU (Digoxigenin)
0 (RNA, Fungal)
0 (Oligonucleotide Probes)
Entry Date(s): Date Created: 20241113 Date Completed: 20241113 Latest Revision: 20241113
Update Code: 20241115
DOI: 10.1007/978-1-0716-4176-7_2
PMID: 39535701
Autor: Wery M; ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France. maxime.wery@curie.fr., Foretek D; ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France., Andjus S; ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France., Verdys P; ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France., Morillon A; ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France. antonin.morillon@curie.fr.
Jazyk: angličtina
Zdroj: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2863, pp. 13-28.
DOI: 10.1007/978-1-0716-4176-7_2
Abstrakt: Northern blotting is a common technique in RNA biology, allowing to detect and quantify RNAs of interest following separation by gel electrophoresis, transfer to a membrane, and hybridization of specific anti-complementary labelled probes. In this chapter, we describe our protocol for efficient RNA extraction from yeast, separation on agarose gel, and capillary transfer to a membrane. We provide two different methods for strand-specific detection of several types of RNAs using oligonucleotide probes, the first using radioactive 32 P-labelled probes, the second based on nonradioactive digoxigenin-labelled probes.
(© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
Databáze: MEDLINE