Autor: |
Tracy DA; Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States., Fernandez-Alberti S; Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, Bernal B1876BXD, Argentina., Galindo JF; Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia., Tretiak S; Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States., Roitberg AE; Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.; CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina. |
Abstrakt: |
In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case. The impact of including specific solvent molecules in the QM region is also analyzed. Our NEXMD-SANDER QM/MM implementation provides a useful computational tool to simulate qualitatively solvent-dependent effects, like electron transfer, stabilization of charge-separated excited states, and the role of solvent reorganization in the molecular optical properties, observed in solution-based spectroscopic experiments. |