Reactivity and Stability of Reduced Ir-Weight TiO 2 -Supported Oxygen Evolution Catalysts for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes.

Autor: Tran HP; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.; Department of Chemical Engineering, Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem District, Hanoi 100000, Vietnam., Nong HN; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Zlatar M; Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany.; Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany., Yoon A; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Hejral U; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Rüscher M; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Timoshenko J; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Selve S; Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany., Berger D; Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany., Kroschel M; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Klingenhof M; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Paul B; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Möhle S; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Nagi Nasralla KN; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany., Escalera-López D; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Bergmann A; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Cherevko S; Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany., Cuenya BR; Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany., Strasser P; Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
Jazyk: angličtina
Zdroj: Journal of the American Chemical Society [J Am Chem Soc] 2024 Nov 20; Vol. 146 (46), pp. 31444-31455. Date of Electronic Publication: 2024 Nov 11.
DOI: 10.1021/jacs.4c07002
Abstrakt: Reducing the iridium demand in Proton Exchange Membrane Water Electrolyzers (PEM WE) is a critical priority for the green hydrogen industry. This study reports the discovery of a TiO 2 -supported Ir@IrO(OH) x core-shell nanoparticle catalyst with reduced Ir content, which exhibits superior catalytic performance for the electrochemical oxygen evolution reaction (OER) compared to a commercial reference. The TiO 2 -supported Ir@IrO(OH) x core-shell nanoparticle configuration significantly enhances the OER Ir mass activity from 8 to approximately 150 A g Ir -1 at 1.53 V RHE while reducing the iridium packing density from 1.6 to below 0.77 g Ir cm -3 . These advancements allow for viable anode layer thicknesses with lower Ir loading, reducing iridium utilization at 70% LHV from 0.42 to 0.075 g Ir kW -1 compared to commercial IrO 2 /TiO 2 . The identification of the Ir@IrO(OH) x /TiO 2 OER catalyst resulted from extensive HAADF-EDX microscopic analysis, operando XAS, and online ICP-MS analysis of 30-80 wt % Ir/TiO 2 materials. These analyses established correlations among Ir weight loading, electrode electrical conductivity, electrochemical stability, and Ir mass-based OER activity. The activated Ir@IrO(OH) x /TiO 2 catalyst-support system demonstrated an exceptionally stable morphology of supported core-shell particles, suggesting strong catalyst-support interactions (CSIs) between nanoparticles and crystalline oxide facets. Operando XAS analysis revealed the reversible evolution of significantly contracted Ir-O bond motifs with enhanced covalent character, conducive to the formation of catalytically active electrophilic O I- ligand species. These findings indicate that atomic Ir surface dissolution generates Ir lattice vacancies, facilitating the emergence of electrophilic O I- species under OER conditions, while CSIs promote the reversible contraction of Ir-O distances, reforming electrophilic O I- and enhancing both catalytic activity and stability.
Databáze: MEDLINE