Patient and treatment-related factors that influence dose to heart and heart substructures in left-sided breast cancer radiotherapy.
Autor: | Costin IC; West University of Timisoara, Faculty of Physics, 300223, Timisoara, Romania; Emergency County Hospital, Oradea 410167, Romania., Marcu LG; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania. Electronic address: loredana.marcu@unisa.edu.au. |
---|---|
Jazyk: | angličtina |
Zdroj: | Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2024 Dec; Vol. 128, pp. 104851. Date of Electronic Publication: 2024 Nov 05. |
DOI: | 10.1016/j.ejmp.2024.104851 |
Abstrakt: | Background: Cardiac substructures are critical organs at risk in left-sided breast cancer radiotherapy being often overlooked during treatment planning. The treatment technique plays an important role in diminishing dose to critical structures. This review aims to analyze the impact of treatment- and patient-related factors on heart substructure dosimetry and to identify the gaps in literature regarding dosimetric reporting of cardiac substructures. Methods: A systematic search of the literature was conducted in Medline/Pubmed database incorporating data published over the past 10 years, leading to 81 eligible studies. Treatment-related factors analyzed for their impact on patient outcome included the number of treatment fields, field geometry, treatment time and monitor units. Additionally, patient-related parameters such as breast size and tumor shape were considered for cardiac dosimetry evaluation. Results: Limited number of fields appeared to be an advantage for mean heart dose reduction when tangential IMRT versus multiple fields IMRT was evaluated. Larger breast size (910.20 ± 439.80 cm 3 ) is linked to larger treatment fields and higher heart doses. Internal mammary node irradiation further escalates cardiac substructures dosimetry treated with 3DCRT and IMRT/VMAT. Proton therapy delivers lower mean heart dose regardless of breathing condition (free or respiratory-gated). Conclusion: The management of treatment- and patient-related factors must be taken into account regardless of the treatment technique when evaluating cardiac dose. Furthermore, the gap found in the literature regarding heart toxicity assessment in left-sided breast cancer patients emphasizes the need for cardiac substructure contouring to better manage and control radiation-induced cardiac toxicities in this patient group. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |