Autor: |
Medeiros Leão GS; Departamento de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos Energéticos e Nanomateriais (GREEN Group), Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil., Silva Ribeiro MD; Departamento de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos Energéticos e Nanomateriais (GREEN Group), Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil., Filho RLF; Departamento de Química, ICEx, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil., Saraiva LB; Departamento de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos Energéticos e Nanomateriais (GREEN Group), Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil., Peña-Garcia RR; Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Engenharia Física, UFPE, Recife, PE 52171-900, Brazil., Teixeira APC; Departamento de Química, ICEx, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil., Lago RM; Departamento de Química, ICEx, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil., Freitas FA; Núcleo de Materiais e Energia - Centro de Bionegócios da Amazônia, Av. Gov. Danilo de Matos Areosa, 160 - Distrito Industrial I, Manaus, AM 69075-351, Brazil., de Sá Barros S; Programa de Pós-graduação em Engenharia de materiais, Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal Chiquito de Aquino, n° 1000 - Mondesir, Lorena, SP 12612-550, Brazil., Junior SD; Curso de Engenharia Química, Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vagas, 1200, Parque Dez de Novembro, Manaus, AM 69050-020, Brazil., Ruiz YL; Departamento de Engenharia de Materiais, Laboratório de Processamento de Materiais Tecnológicos (LPMaT), Universidade Federal do Amazonas, Instituto de Ciências Exatas, Rua Av. General Rodrigo Otávio Jordão Ramos, 1200, Coroado I, Manaus 69067-005, Brazil., Nobre FX; Departamento de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos Energéticos e Nanomateriais (GREEN Group), Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil. |
Abstrakt: |
Extensive research in the last few decades has conclusively demonstrated the significant influence of experimental conditions, surfactants, and synthesis methods on semiconductors' properties in technological applications. Therefore, in this study, the synthesis of molybdenum oxide (MoO 3 ) was reported by the addition of 2.5 (MoO 3 _2.5), 5 (MoO 3 _5), 7.5 (MoO 3 _7.5), and 10 mL (MoO 3 _10) of nitric acid, obtaining the respective concentrations of 0.6, 1.10, 1.6, and 0.6 mol L -1 . In this study, all samples were synthesized by the hydrothermal method at 160 °C for 6 h. The materials obtained were structurally characterized by X-ray diffraction (XRD) and structural Rietveld refinement, Raman spectroscopy, and infrared spectroscopy (FTIR), confirming the presence of all crystallographic planes and bands associated with active modes for the pure hexagonal phase ( h -MoO 3 ) when the solution's concentration was 0.6 mol L -1 of nitric acid. For concentrations of 1.10, 1.60, and 2.10 mol L -1 , the presence of crystallographic planes and active modes associated with the formation of mixtures of molybdenum oxide polymorphs was confirmed, in this case, the orthorhombic, monoclinic, and hexagonal phases. X-ray photoelectron spectroscopy reveals the occurrence of the states Mo 4+ , Mo 5+ , and Mo 6+ , which confirm the predominance of the acid Lewis sites, corroborating the analysis by adsorption of pyridine followed by characterization by infrared spectroscopy. The images collected by scanning electron microscopy confirmed the information presented in the structural characterization, where microcrystals with hexagonal morphology were obtained for the MoO 3 _2.5 sample. In contrast, the MoO 3 _5, MoO 3 _7.5, and MoO 3 _10 samples exhibited hexagonal and rod-shaped microcrystals, where the latter morphology is characteristic of the orthorhombic phase. The catalytic tests carried out in the conversion of oleic acid into methyl oleate, using the synthesized samples as a heterogeneous catalyst, resulted in conversion percentages of 52.5, 58.6, 69.1, and 97.2% applying the samples MoO 3 _2.5, MoO 3 _5, MoO 3 _7.5, and MoO 3 _10, respectively. The optimization of the catalytic tests with the MoO 3 _10 sample revealed that the conversion of oleic acid into methyl oleate is a thermodynamically favorable process, with a variation in the Gibbs free energy between -67.3 kJ mol -1 and 83.4 kJ mol -1 as also, the energy value of activation of 24.6 kJ mol -1 , for the temperature range from 80 to 140 °C, that is, from 353.15 to 413.15 K, respectively. Meanwhile, the catalyst reuse tests resulted in percentages greater than 85%, even after the ninth catalytic cycle. Therefore, the expressive catalytic performance of the mixture of h -MoO 3 and α-MoO 3 (MoO 3 _10) phases is confirmed, associated with the synergistic effect, mainly due to the increase in the surface area and available Lewis sites of these phases. |