3D Vortex-Energetics in the Left Pulmonary Artery for Differentiating Pulmonary Arterial Hypertension and Pulmonary Venous Hypertension Groups Using 4D Flow MRI.
Autor: | Elbaz MSM; Radiology, Northwestern University, Chicago, Illinois, USA., Shafeghat M; Radiology, Northwestern University, Chicago, Illinois, USA., Freed BH; Cardiology, Northwestern University, Chicago, Illinois, USA., Sarnari R; Radiology, Northwestern University, Chicago, Illinois, USA., Zilber Z; Radiology, Northwestern University, Chicago, Illinois, USA., Avery R; Radiology, Northwestern University, Chicago, Illinois, USA., Markl M; Radiology, Northwestern University, Chicago, Illinois, USA., Allen BD; Radiology, Northwestern University, Chicago, Illinois, USA., Carr J; Radiology, Northwestern University, Chicago, Illinois, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of magnetic resonance imaging : JMRI [J Magn Reson Imaging] 2024 Oct 28. Date of Electronic Publication: 2024 Oct 28. |
DOI: | 10.1002/jmri.29635 |
Abstrakt: | Background: Pulmonary hypertension (PH) is a life-threatening. Differentiation pulmonary arterial hypertension (PAH) from pulmonary venous hypertension (PVH) is important due to distinct treatment protocols. Invasive right heart catheterization (RHC) remains the reference standard but noninvasive alternatives are needed. Purpose/hypothesis: To evaluate 4D Flow MRI-derived 3D vortex energetics in the left pulmonary artery (LPA) for distinguishing PAH from PVH. Study Type: Prospective case-control. Population/subjects: Fourteen PAH patients (11 female) and 18 PVH patients (9 female) diagnosed from RHC, 23 healthy controls (9 female). Field Strength/sequence: 1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession (bSSFP) cardiac cine sequences. Assessment: LPA 3D vortex cores were identified using the lambda2 method. Peak vortex-contained kinetic energy (vortex-KE) and viscous energy loss (vortex-EL) were computed from 4D flow MRI. Left and right ventricular (LV, RV) stroke volume (LVSV, RVSV) and ejection fraction (LVEF, RVEF) were computed from bSSFP. In PH patients, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWR) and pulmonary vascular resistance (PVR) were determined from RHC. Statistical Tests: Mann-Whitney U test for group comparisons, Spearman's rho for correlations, logistic regression for identifying predictors of PAH vs. PVH and develop models, area under the receiver operating characteristic curve (AUC) for model performance. Significance was set at P < 0.05. Results: PAH patients showed significantly lower vortex-KE (37.14 [14.68-78.52] vs. 76.48 [51.07-120.51]) and vortex-EL (9.93 [5.69-25.70] vs. 24.22 [12.20-32.01]) than PVH patients. The combined vortex-KE and LVEF model achieved an AUC of 0.89 for differentiating PAH from PVH. Vortex-EL showed significant negative correlations with mPAP (rho = -0.43), PCWP (rho = 0.37), PVR (rho = -0.64). In the PAH group, PVR was significantly negatively correlated with LPA vortex-KE (rho = -0.73) and vortex-EL (rho = -0.71), and vortex-KE significantly correlated with RVEF (rho = 0.69), RVSV, (rho = 0.70). In the PVH group, vortex-KE (rho = 0.52), vortex-EL significantly correlated with RVSV (rho = 0.58). Data Conclusion: These preliminary findings suggest that 4D flow MRI-derived LPA vortex energetics have potential to noninvasively differentiate PAH from PVH and correlate with invasive hemodynamic parameters. Evidence Level: 1 TECHNICAL EFFICACY: Stage 3. (© 2024 The Author(s). Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.) |
Databáze: | MEDLINE |
Externí odkaz: |