The Correlation between the Elastic Modulus of the Achilles Tendon Enthesis and Bone Microstructure in the Calcaneal Crescent.
Autor: | Doi K; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.; Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan., Moazamian D; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA., Namiranian B; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA., Statum S; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.; Radiology Service, Veterans Affairs San Diego Healthcare System-San Diego, La Jolla, CA 92161, USA., Afsahi AM; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA., Yamamoto T; Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan., Cheng KY; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA., Chung CB; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.; Radiology Service, Veterans Affairs San Diego Healthcare System-San Diego, La Jolla, CA 92161, USA., Jerban S; Department of Radiology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.; Radiology Service, Veterans Affairs San Diego Healthcare System-San Diego, La Jolla, CA 92161, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Tomography (Ann Arbor, Mich.) [Tomography] 2024 Oct 10; Vol. 10 (10), pp. 1665-1675. Date of Electronic Publication: 2024 Oct 10. |
DOI: | 10.3390/tomography10100122 |
Abstrakt: | Background: The calcaneal enthesis, an osseous footprint where the Achilles tendon seamlessly integrates with the bone, represents a complex interface crucial for effective force transmission. Bone adapts to mechanical stress and remodels based on the applied internal and external forces. This study explores the relationship between the elasticity of the Achilles tendon enthesis and the bone microstructure in the calcaneal crescent. Methods: In total, 19 calcaneal-enthesis sections, harvested from 10 fresh-frozen human cadaveric foot-ankle specimens (73.8 ± 6.0 years old, seven female), were used in this study. Indentation tests were performed at the enthesis region, and Hayes' elastic modulus was calculated for each specimen. Micro-CT scanning was performed at 50-micron voxel size to assess trabecular bone microstructure within six regions of interest (ROIs) and the cortical bone thickness along the calcaneal crescent. Results: Significant Spearman correlations were observed between the enthesis elastic modulus and trabecular bone thickness in the distal entheseal (ROI 3) and proximal plantar (ROI 4) regions (R = 0.786 and 0.518, respectively). Conclusion: This study highlights the potential impacts of Achilles tendon enthesis on calcaneal bone microstructure, which was pronounced in the distal calcaneal enthesis, suggesting regional differences in load transfer mechanism that require further investigation. |
Databáze: | MEDLINE |
Externí odkaz: |