Fluid-Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms.

Autor: Nagy J; eulerian-solutions e.U., Leonfeldnerstraße 245, 4040 Linz, Austria., Fenz W; Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria., Miron VM; Institute of Polymer Product Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria., Thumfart S; Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria., Maier J; Institute of Polymer Product Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria., Major Z; Institute of Polymer Product Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria., Stefanits H; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria., Oberndorfer J; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria., Stroh N; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria., Mazanec V; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria., Rauch PR; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria., Gruber A; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.; Clinical Research Institute for Neuroscience, Johannes Kepler University Linz, 4020 Linz, Austria., Gmeiner M; Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4020 Linz, Austria.; Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
Jazyk: angličtina
Zdroj: Brain sciences [Brain Sci] 2024 Sep 27; Vol. 14 (10). Date of Electronic Publication: 2024 Sep 27.
DOI: 10.3390/brainsci14100977
Abstrakt: Background: Hemodynamics during the growth process of cerebral aneurysms are incompletely understood. We developed a novel fluid-structure interaction analysis method for the identification of relevant scenarios of aneurysm onset. Method: This method integrates both fluid dynamics and structural mechanics, as well as their mutual interaction, for a comprehensive analysis. Patients with a single unruptured cerebral aneurysm were included. Results: Overall, three scenarios were identified. In scenario A, wall shear stress (WSS) was low, and the oscillatory shear index (OSI) was high in large areas within the region of aneurysm onset (RAO). In scenario B, the quantities indicated a reversed behavior, where WSS was high and OSI was low. In the last scenario C, a behavior in-between was found, with scenarios A and B coexisting simultaneously in the RAO. Structural mechanics demonstrated a similar but independent trend. Further, we analyzed the change in hemodynamics between the onset and a fully developed aneurysm. While scenarios A and C remained unchanged during aneurysm growth, 47% of aneurysms in scenario B changed into scenario A and 20% into scenario C. Conclusions: In conclusion, these findings suggest that WSS and the OSI are reciprocally regulated, and both low and high WSS/OSI conditions can lead to aneurysm onset.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje