Autor: |
Sánchez J; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Ulloa J; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Oyarzún Y; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Ceballos M; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Ruiz C; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Boury B; ICGM, CNRS, University Montpellier, ENSCM, 34293 Montpellier, France., Urbano BF; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile. |
Abstrakt: |
Incorporating nanoparticles into injectable hydrogels is a well-known technique for improving the mechanical properties of these materials. However, significant differences in the mechanical properties of the polymer matrix and the nanoparticles can result in localized stress concentrations at the polymer-nanoparticle interface. This situation can lead to problems such as particle-matrix debonding, void formation, and material failure. This work introduces boronic acid/boronate ester dynamic covalent bonds (DCBs) as energy dissipation sites to mitigate stress concentrations at the polymer-nanoparticle interface. Once boronic acid groups were immobilized on the surface of SiO 2 nanoparticles (SiO 2 -BA) and incorporated into an alginate matrix, the nanocomposite hydrogels exhibited enhanced viscoelastic properties. Compared to unmodified SiO 2 nanoparticles, introducing SiO 2 nanoparticles with boronic acid on their surface improved the structural integrity and stability of the hydrogel. In addition, nanoparticle-reinforced hydrogels showed increased stiffness and deformation resistance compared to controls. These properties were dependent on nanoparticle concentration. Injectability tests showed shear-thinning behavior for the modified hydrogels with injection force within clinically acceptable ranges and superior recovery. |