A geometric approach to the impact of immigration of people infected with communicable diseases.

Autor: Guarello S; Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso, Chile., González N; Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, Chile., Flores I; Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, Chile., Aguirre P; Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso, Chile. Electronic address: pablo.aguirre@usm.cl.
Jazyk: angličtina
Zdroj: Mathematical biosciences [Math Biosci] 2024 Dec; Vol. 378, pp. 109320. Date of Electronic Publication: 2024 Oct 22.
DOI: 10.1016/j.mbs.2024.109320
Abstrakt: We construct a set of new epidemiological thresholds to address the general problem of spreading and containment of a transmissible disease with influx of infected individuals (i.e., when the classic R 0 is no longer meaningful). We provide analytical properties of these indices and illustrate their usefulness in a compartmental model of COVID-19 with data taken from Chile showing a good predictive potential when contrasted with the recorded disease behavior. This geometric approach and the associated analytical and numerical results break new ground in that they allow us to quantify the severity of an immigration of infectious individuals into a community, and identification of the key parameters that are capable of changing or reversing the spread of an infectious disease in specific models.
Competing Interests: Declaration of competing interest None.
(Copyright © 2024 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE