Ti 3 C 2 T x -UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants.
Autor: | Rothammer B; Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Feile K; Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Werner S; Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Frank R; Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany., Bartz M; Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Wartzack S; Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Schubert DW; Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Drummer D; Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany., Detsch R; Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany., Wang B; Department of Functional Materials, Saarland University, Saarbrücken, Germany., Rosenkranz A; Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile.; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile., Marian M; Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.; Institute of Machine Design and Tribology (IMKT), Leibniz University Hannover, Garbsen, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2025 Jan; Vol. 113 (1), pp. e37819. Date of Electronic Publication: 2024 Oct 24. |
DOI: | 10.1002/jbm.a.37819 |
Abstrakt: | There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti (© 2024 The Author(s). Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.) |
Databáze: | MEDLINE |
Externí odkaz: |